

Institut viti-vinicole

Tätigkeitsbericht 2022

BioViM

Schaderreger-Monitoring und Ableitung ökologischer und umweltschonender Rebschutzstrategien im Weinbau

Berichtszeitraum: 1. Januar 2022 – 31. Dezember 2022

Mit Beiträgen von Daniel Molitor, Miriam Machwitz, Doriane Dam, Kristina Heilemann, Christian Bossung, Arturo Torres, Jürgen Junk und Marco Beyer

Unter Mitwirkung von Marine Pallez-Barthel, Franz Ronellenfitsch, Mareike Schultz, Rebecca Retzlaff, Melina Käfer, Adriano Gama und Christopher Simon

Inhaltsverzeichnis

1	EINLEITUNG	3
2	MATERIAL UND METHODEN	4
2.1	Versuchsflächen	4
2.2	Pflanzenschutzmittel und sonstige Testsubstanzen	5
2.3	 Versuchsaufbau 2.3.1 Versuch L Monitoring Scaphoideus titanus 2.3.2 Versuch R Monitoring Drosophila suzukii 2.3.3 Versuch T Bekämpfung Drosophila suzukii 2.3.4 Versuch Y Fernerkundliche Erkennung der Peronospora 2.3.5 Versuch AA Erfassung symptomatischer Esca-Stöcke 2.3.6 Erfassung des Bestandsklima mittels mikro-meteorologischer Messungen mit dem Schwerpunkt Blattnässe 2.3.7 PIWI Monitoring 2.3.8 Sonnenbrandversuch 	5 6 9 12 12 14
2.4	Auswertung 2.4.1 Monitoring S. titanus 2.4.2 Befallsbonituren Falscher Mehltau 2.4.3 Erfassung des Fluges und der Eiablage durch Drosophila suzukii 2.4.4 Bonituren in den Freilandversuchen zur Bekämpfung der Kirschessigfliege 2.4.5 Bonituren in den pilzwiderstandsfähigen Sorten 2.4.6 Fernerkundliche Verfahren zur Befallsdifferenzierung im Versuch Y 2.4.7 Monitoring der Esca-symptomatischen Stöcke im Versuch AA 2.4.8 Auswertung der Thermaldaten zur Analyse des Sonnenbrandversuchs	16 16 17 18 18 26 26
3 3.1	Versuch L Monitoring Scaphoideus titanus 3.1.1 Fangzahlen	28 28 28
3.2	Surveillance des activités de vol et de ponte de <i>Drosophila suzukii</i>	28
3.3	Expériences de lutte contre Drosophila suzukii3.3.1Essais de produits naturels contre D. suzukii au vignoble	31 31
3.4	Monitoring der pilzwiderstandsfähigen Sorten3.4.1Befall durch Falschen Mehltau3.4.2Sonnenbrandschäden3.4.3Befall mit Reblaus Blattgallen	33 33 34 34
3.5	Versuch Y Fernerkundliche Erkennung der Peronospora3.5.1Befallsverlauf an den Blättern3.5.2Ergebnisse der fernerkundlichen Untersuchungen	36 36 37

3.6	Versuch AA Monitoring symptomatischer Esca-Stöcke	51
3.7 3. 3. 3.	 Bestandsklima in den verschiedenen Erziehungssystemen 7.1 Eingangsdaten 7.2 Modellimplementierung 7.3 Modellvalidierung 	52 56 57 58
4	FAZIT	61
5	DANKSAGUNG	64
6	LITERATURVERZEICHNIS	65
7	ANHANG	66
7.1	Phänologische Entwicklung 2022	66
7.2	Tageswitterungsbedingungen in der Vegetationsperiode 2022	68
7.3	Veröffentlichungen	69
7.4	Teilnahme an Veranstaltungen	70
7.5	Python Code zur Erzeugung der Transferfunktion (WP 3)	71

1 Einleitung

Das Projekt BioViM2 (Suivi des ravageurs et développement de strategies de protection des cultures respectueuses de l'environnement en viticulture) ist eine Kooperation zwischen dem Weinbauinstitut (IVV) und dem Luxembourg Institute of Science and Technology (LIST) unter Einbindung von Winzern der Luxemburger Mosel. Das Projekt wird durch das IVV im Ministerium für Landwirtschaft, Weinbau und ländliche Entwicklung gefördert.

Die Produktion qualitativ hochwertiger Weine unter reduziertem Pflanzenschutzmitteleinsatz stellt eine besondere Herausforderung dar, weil viele andere Maßnahmen der Schaderregerbekämpfung, wie sie in der Landwirtschaft eingesetzt werden (beispielsweise Fruchtfolgen oder kurzfristige Sortenwechsel), aufgrund des dauerhaften Charakters der Weinkultur nicht genutzt werden können.

Die EU-Direktive 2009/128 fordert im Rahmen der guten fachlichen Praxis im Pflanzenschutz alle Pflanzenschutzmaßnahmen standort-, kultur- und situationsbezogen durchzuführen und die Anwendung von Pflanzenschutzmitteln auf das notwendige Maß zu beschränken. Nationale Aktionspläne zur Reduzierung der PSM-Anwendung sollen erarbeitet werden. Das Projekt BioViM2 trägt insbesondere zur Umsetzung der Teile der Gesetze, Verordnungen und Pläne bei, die wissenschaftliche Methoden oder Konzepte erfordern. Hier werden folgende Ziele verfolgt:

- 1. Minimierung des Einsatzes von Pflanzenschutzmitteln im Weinbau;
- 2. Sicherung von Ertrag und Produktqualität;
- 3. Minimierung der Risiken für Mensch und Natur.

Im Folgenden werden die Untersuchungen des Versuchsjahres 2022 dargestellt. Der Sommer 2022 war durch extreme Trockenheit geprägt. Dies führte dazu, dass sich im *Peronospora* Versuch nach der künstlichen Inokulation der Befall nur relativ kurz über den Zeitraum von ca. 3 Wochen ausgebreitet hat bis zu einer maximalen Befallsstärke von 1,6%. Danach war keine weitere Zunahme von Symptomen mehr zu verzeichnen bzw. die Symptomatik ging wieder auf 0% zurück, da betroffene Blätter schnell abfallen (umgangssprachlich auch Blattfallkrankheit genannt). Aufgrund der außergewöhnlichen Hitze und Trockenheit und der sehr kurzen *Peronospora*-Saison von Seiten der Fernerkundung, wurden zusätzliche Thermaldaten aufgenommen. Informationen über Temperaturunterschiede im Weinberg können nützliche Informationen für den Umgang mit extremer Hitze und Trockenheit liefern. Darüber hinaus wurde die Verfügbarkeit eines Sonnenbrandversuchs genutzt, um das

Potential von thermalen Schrägaufnahmen, die mit der Drohne aufgenommen wurden, zu testen (siehe Abschnitt Sonnenbrandversuch).

2 Material und Methoden

2.1 Versuchsflächen

Alle Versuche wurden auf Flächen des IVV (Tab. 2.1.1) in Remich oder in Weinbergen von Partnerwinzern (Monitoring *Scaphoideus titanus*; Monitoring *Drosophila suzukii*) entlang der luxemburgischen Mosel realisiert.

Versuch	Ort	Rebsorte	Unterlage	Pflanzjahr
Y	Remich	Pinot gris	SO4	1994
т	Remich	P. noir précoce	SO4	1999
		Cabaret noir	SO4	2014

Tab 2.1.1: Beschreibung der Versuchsflächen am IVV.

Die Bewirtschaftung der Weinberge am IVV erfolgte – abgesehen von den Versuchsfragestellungen – in betriebsüblicher Weise. Eine Grundabdeckung gegenüber den weinbaulichen Hauptschaderregern *Plasmopara viticola* und *Erysiphe necator* erfolgte vom Boden in Form von Schlepper-gezogenen Sprühgeräten. Hierbei wurden überwiegend Pflanzenschutzmittel des ökologischen Anbaus sowie Phosphorige Säure verwendet. Zur Bekämpfung des Traubenwicklers kam in allen Versuchsparzellen die Pheromon-Verwirr-Methode zum Einsatz.

2.2 Pflanzenschutzmittel und sonstige Testsubstanzen

Folgende Pflanzenschutzmittel und sonstige Testsubstanzen kamen (außerhalb der Grundabdeckung) in den Versuchen zum Einsatz (Tab. 2.2.1):

Handelsname	Wirkstoff(e) /	Wirkstoffgehalt	Zulassungsinhaber /
	Zusammensetzung		Vertrieb / Entwickler
Cutisan	Kaolin	Mind. 990 g/kg	Biofa AG
Folpan 500 SC	Folpet	500 g/l	ADAMA
Fytosave	COS-OGA	12,5 g/l	GOWAN
Kocide Opti	Kupferhydroxid	300 g/kg Kupfer	Spiess-Urania Chemicals GmbH
Microthiol	Schwefel	800 g/kg	UPL Europe Ltd.
Profiler	Fluopicolide Fosetyl-Al	44,4 g/kg 666,7 g/kg	Bayer Crop Science
Veriphos	Kaliumphosphat	755 g/l	Luxembourg Industries LTD
Vincare	Folpet Benthiavalicarb	500 g/kg 17,5 g/kg	Spiess-Urania Chemicals GmbH
Zorvec Zelavin	Oxathiapiprolin	100 g/l	CORTEVA agriscience

 Tab. 2.2.1:
 Verwendete Pflanzenschutzmittel und sonstige Testsubstanzen.

2.3 Versuchsaufbau

Die Versuche wurden als vollständig randomisierte Blockanlagen angelegt. Jedes Versuchsglied (VG) wurde vierfach wiederholt. Die Versuchsglieder in den einzelnen Versuchen sind den folgenden Tabellen zu entnehmen.

2.3.1 Versuch L Monitoring Scaphoideus titanus

Zur Überprüfung eines potentiellen Auftretens von *Scaphoideus titanus*, dem Vektor der *Flavescence dorée*, wurde während der Saison 2022 ein Monitoring mit Gelbfallen an vier Standorten durchgeführt (Tab. 2.3.1.1).

Tab. 2.3.1.1. Standorte des 3. Illands Monitoring	5 2021.
Standort	Koordinaten
A Wellenstein	49,528 N; 6,347 O
B Remich-IVV	49,545 N; 6,354 O
C Ehnen	49,602 N; 6,396 O
D Ahn	49,628 N; 6,419 O

Tab. 2.3.1.1: Standorte des S. titanus Monitorings 2021.

Die Auswahl der Standorte erfolgte entweder aufgrund ihrer Position in klimatisch begünstigen Weinbergen (Standorte A, C, D), in der Nähe von Rebschulen (Standorte A, B) bzw. entlang einer Hauptverkehrsverbindung (Standort C).

Die Gelbfallen ("Gelbtafel Profi PK", Hermann Meyer KG, Rellingen, Deutschland) wurden am 18.07.2022 horizontal in der Höhe der Traubenzone installiert (Abb. 2.3.1.1)

Abbildung 2.3.1.1: Gelbfallen zur Überwachung des Fluges von Scaphoideus titanus.

2.3.2 Versuch R Monitoring Drosophila suzukii

Zur Überwachung des Flugs und der Eiablage durch die Kirschessigfliege, *Drosophila suzukii*, welche im Jahr 2014 erstmalig zu parzellenweisen starken Schäden im Gebiet geführt hatte, erfolgte im Jahr 2022 ein Monitoring in verschiedenen Rebsorten am Standort Remich (49,545 N; 6,354 O) (Tab. 2.3.2.1).

Parzelle	Gemarkung	Standort/Sorte
1	Remich	Pinotin
2	Remich	Efeu
3	Remich	Brombeeren
4	Remich	Pinot noir précoce
16	Remich	Pinot noir (130)
17	Remich	Pinot noir (109)
18	Remich	Cabaret noir
19	Remich	Souvignier gris
20	Remich	Sauvignac
21	Remich	Cabertin
22	Remich	Divico

Tabelle 2.3.2.1: Parzellen im Monitoring zum Flug und zur Eiablage durch *Drosophila suzukii* im Jahr 2022.

Zur Überwachung der Flugaktivität wurden Becherfallen der Firma Riga (Ellikon an der Thur, Schweiz) verwendet (Abb. 2.3.2.1).

Abbildung 2.3.2.1: Riga-Becherfalle zur Überwachung der Flugaktivität von Drosophila suzukii.

Während der Monate August und September wurden die Fallen wöchentlich ausgetauscht und die Fangzahlen erfasst.

2.3.3 Versuch T Bekämpfung Drosophila suzukii

Zur Bekämpfung der Kirschessigfliege wurden zwei Versuche in den Versuchsflächen des IVV angelegt.

In der Rebsorte Pinotin wurde ein Versuch zur abschreckenden Wirkung von Kaolin durchgeführt.

Folgende Versuchsglieder wurden realisiert (Tab. 2.3.3.1):

VG	Spritzfolge
1	unbehandelte Kontrolle
2	Kaolin Surround 2%
3	Kaolin Surround 2% + BreakThru 0.075% (Netzmittel)

Tabelle 2.3.3.1: Versuchsglieder im Versuch T (Versuchsjahr 2022).

In den Versuchsgliedern 2 und 3 wurde am 29.07. und 19.08. eine beidseitige Applikation der Prüfmittel durchgeführt. Die Applikation erfolgte mittels Akku-Rückenspritze der Firma Solo Kleinmotoren GmbH vom Typ Akku 416, ausgestattet mit Injektorflachstrahldüsen der Firma Agrotop (Typ Albuz AVI 80). Behandelt wurde die ganze Laubwand. Die Anwendungskonzentration betrug 2% (w/v).

2.3.4 Versuch Y Fernerkundliche Erkennung der Peronospora

In Versuch Y wurden (i) verschiedene Strategien zur Kontrolle des Falschen Mehltaus in der Rebsorte Pinot gris überprüft (Tab. 2.3.4.1), sowie (ii) fernerkundliche Verfahren zur Differenzierung des Befallsgrades am Reblaub getestet.

VG Strategie 1 ohne künstliche Inokulation unbehandelte Kontrolle 2 unbehandelte Kontrolle künstliche Inokulation; 24.05.2022 integriert künstliche Inokulation; 24.05.2022 3 4 Kupfer künstliche Inokulation; 24.05.2022 5 **Phosphorige Säure** künstliche Inokulation; 24.05.2022 6 Kupfer + Phosphorige S. künstliche Inokulation; 24.05.2022 7 Kupfer + Phosphorige S. bis BBCH 69 künstliche Inokulation; 24.05.2022 Kupfer + Fytosave künstliche Inokulation; 24.05.2022 8

Tabelle 2.3.4.1: Versuchsglieder im Versuch Y (Versuchsjahr 2022).

Folgende Pflanzenschutzmaßnahmen wurden im Versuchsjahr 2022 durchgeführt (Tab. 2.3.4.2):

		1. Spritzung	2. Spritzung	3. Spritzung	4. Spritzung	5. Spritzung	6. Spritzung
		9-leaves	Early flowering	Berries groat size	Berries beginning to touch	Beginning of ripening	Beginning of ripening
		25.05.2022	07.06.2022	20.06.2022	30.06.2022	12.07.2022	25.07.2022
Oidium		Microthiol 4,8 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha
Pero	1						
Oidium		Microthiol 4,8 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha
Pero	2						
Oidium		Microthiol 4,8 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Nissodium 500 ml/ha
Pero	3	Folpan 0,7 kg/ha	Folpan 1,0 kg/ha	Zorvec Zelavin 0,32 L/ha	Profiler WG 2,6 kg/ha	Vincare 2,0 kg/ha	Folpan 1,6 kg/ha
Oidium		Microthiol 4,8 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha
Pero	4	Kocide Opti 0,8 kg/ha	Kocide Opti 1,3 kg/ha	Kocide Opti 1,2 kg/ha	Kocide Opti 1,2 kg/ha	Kocide Opti 1,0 kg/ha	Kocide Opti 1,0 kg/ha
Oidium		Microthiol 4,8 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha
Pero	5	Veriphos 2,0 L/ha	Veriphos 3,0 L/ha	Veriphos 3,0 L/ha	Veriphos 3,5 L/ha	Veriphos 3,0 L/ha	Veriphos 3,0 L/ha
Oidium		Microthiol 4,8 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha
		Veriphos 2,0 L/ha	Veriphos 3,0 L/ha	Veriphos 3,0 L/ha	Veriphos 3,5 L/ha	Veriphos 3,0 L/ha	Veriphos 3,0 L/ha
Pero	6	Kocide Opti 0,8 kg/ha	Kocide Opti 1,3 kg/ha	Kocide Opti 1,2 kg/ha	Kocide Opti 1,2 kg/ha	Kocide Opti 1,0 kg/ha	Kocide Opti 1,0 kg/ha
Oidium		Microthiol 4,8 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha
		Veriphos 2,0 L/ha	Veriphos 3,0 L/ha	Veriphos 3,0 L/ha			
Pero	7	Kocide Opti 0,8 kg/ha	Kocide Opti 1,3 kg/ha	Kocide Opti 1,2 kg/ha	Kocide Opti 1,2 kg/ha	Kocide Opti 1,0 kg/ha	Kocide Opti 1,0 kg/ha
Oidium		Microthiol 4,8 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha	Microthiol 6,0 kg/ha
Pero	8	Evtosave SC 0.751/ha	Evtosave SC 18 L/ha	Evtosave SC 2.0 L/ha	Evtosave SC 2.0 1/ba	Evtosave SC 2.0 1/ha	Evtosave SC 2.0 1/ha

TADELE Z.S.4.Z. ODHLZDIAH VEISUCH TIVEISUCHSIAH ZUZZI. DAISLEHUHU. OHHUH. IVV	Tabelle 2.3.4.2:	Spritzplan	Versuch Y	(Versuchs	iahr 2022)	. Darstellung	: Simon.	IVV.
---	------------------	------------	-----------	-----------	------------	---------------	----------	------

Die künstliche Inokulation (10⁴-10⁵ Sporangien / ml) wurde am 24.05.2022 durchgeführt. Die Applikationen erfolgten mittels des Parzellenspritzgeräts des IVV.

Für eine Schätzung des Befallsgrades waren zwei Kamerasysteme vorgesehen: (1) eine einfache multispektrale Kamera (DJI P4) mit fünf spektralen Bändern im Sichtbaren, RedEdge sowie nahen Infrarot. (2) eine Thermalkamera (DJI Zenmuse H20T). Für eine Weiterführung der Datenreihe von 2020 sowie zur Risikominimierung von möglichen Covid-19 Beschränkungen, wurde zusätzlich mit der Headwall Nano geflogen. Abbildung 2.3.4.1 zeigt eine Übersicht über die drei Kamerasysteme.

400 nm - 1000 nm, 272 Kanäle

DJI Zenmuse H20T

DJI P4 Multispectral 5 Kanäle (RGB, RE, NIR)

Abbildung 2.3.4.1: Die drei eingesetzten Kameras im Vergleich. Links die Headwall Nano, Hyperspektralkamera, Mitte, DJI Zenmuse H20T, Thermalkamera und rechts, die fünf-Band Kamera P4 Multispectral

Für das Jahr 2022 wurde die Teax Thermalkamera durch eine DJI Zenmuse H20T mit einer zusätzlichen Drohnenplattform DJI Matrice 300 RTK ersetzt. Die radiometrischen und geometrischen Eigenschaften sind mit denen der Teax Thermalkamera identisch, jedoch erfolgt hier eine automatische Co-Registrierung der zeitgleich erstellten RGB Aufnahmen. Wie bereits in 2020 und 2021, wurde nicht im festgelegten zweiwöchigen Rhythmus geflogen, sondern vielmehr bedarfsorientiert. Im Detail bedeutet das, dass es einen Flug direkt nach der Innokulation gab und im weiteren Verlauf entsprechend der Ausbreitung von Peronospora. Wurde keine Ausbreitung beobachtet, fanden entsprechend keine Befliegungen statt. In dieser Saison kam es aufgrund der extremen Trockenheit nur zu einer sehr geringen und kurzen Ausbreitung von Peronospora bis maximal 1,6% Befallsstärke. Daher wurden im Juli und August 2022 die freien Kapazitäten genutzt, um Thermaldaten zu erheben, die interessante Informationen zu Temperaturunterschieden im Weinberg bei extremer Trockenheit liefern

sollen. Darüber hinaus wurde der Sonnenbrandversuch analysiert (vgl. separate Unterkapitel zum Sonnenbrandversuch).

Abbildung 2.3.4.2: Referenzpanele zur Erhebung von Referenzdaten für die Atmosphärenkorrektur

Parallel zu jedem Flug fanden Referenzmessungen am Boden statt. Diese Panele und ein Spectralon-Panel wurden wie im vorangegangenen Jahr mit einem Feldspektrometer (Spectral Evolution) für die radiometrische Korrektur Bilddaten eingemessen (Abbildung 2.3.4.2). Zusätzlich wurden wie im Jahr 2020 und 2021 mit Alufolie überzogenen Marker eingesetzt, die am Ende von jedem Versuchsplot, links, rechts und in der Mitte der Versuchsreihen ausgelegt wurden. Insbesondere für die kontrastschwächeren Thermalaufnahmen dienen diese Marker der besseren Orientierung und Plot-Erkennung im Bild.

Neben radiometrischen Panelen wurden Passpunktmarker eingesetzt, die der Korrektur der Lagegenauigkeit dienen (Abbildung 2.3.4.2: Abbildung 2.3.4.3). Die Vorlage der Muster stammt aus der Agisoft Metashape Software und wurden auf 60x60 cm große Holzplatten geklebt. Die spezifischen Muster werden bei jedem Flug exakt an die gleiche Stelle gelegt sowie neben die Grauwertpaneele, so dass eine automatisierte Erkennung und Korrektur der Lagegenauigkeit erfolgen kann (siehe 2.4.5.2).

Abbildung 2.3.4.3: Panele zur automatisierten Erkennung und Korrektur der Lagegenauigkeit

2.3.5 Versuch AA Erfassung symptomatischer Esca-Stöcke

Ziel des Versuchs AA ist die Erfassung symptomatischer Esca-Stöcke in den Weinbergen im Bereich "Berg" des IVV in Remich. Hierzu erfolgt seit dem Jahr 2017 jährlich nach Reifebeginn eine Einzelstock-genaue Bonitur.

2.3.6 <u>Erfassung des Bestandsklima mittels mikro-meteorologischer</u> <u>Messungen mit dem Schwerpunkt Blattnässe</u>

Zur Erfassung des Bestandsklimas mit dem Schwerpunkt Blattnässe wurden zu Beginn des Jahres 2020 sechs meteorologische Stationen in den Versuchsfeldern installiert. In den verschiedenen Erziehungssystemen (E3 = Minimalschnitt im Spalier, E2 = Spaliererziehung, Entblätterung der Traubenzone, E1 = Spaliererziehung, ohne Entblätterung der Traubenzone) wurden jeweils zwei meteorologische Stationen installiert (Abbildung 2.3.6.1).

Abbildung 2.3.6.1: Verteilung der meteorologischen Stationen in den verschiedenen Erziehungssystemen. Die mit "full" gekennzeichneten Stationen erfassen zusätzlich zu der Blattnässe, Lufttemperatur und relativer Feuchte noch die Globalstrahlung im Bestand, sowie die Windrichtung und Geschwindigkeit über dem Bestand. E3 = Minimalschnitt im Spalier, E2 = Spaliererziehung, Entblätterung der Traubenzone, E1 = Spaliererziehung, ohne Entblätterung der Traubenzone.

Pro Erziehungssystem gibt es eine Master Station, die die Parameter Lufttemperatur, relative Feuchte (im Bestand), Globalstrahlung (im Bestand), sowie Windrichtung und Geschwindigkeit (über dem Bestand) erfasst (Abbildung 2.3.6.2 links). Des Weiteren wurden in drei verschiedenen Höhen (unterhalb der Laubwand, in der Laubwand, sowie über dem Bestand) fünf Blattnässesensoren installiert. In den beiden unteren Messhöhen (unterhalb und in der Laubwand) wurde jeweils ein Blattnässesensor in Richtung der Laubwand und einer von der Laubwand weg gerichtet installiert. Über dem Bestand wurde nur ein einzelner Blassnässesensor pro Station installiert. Die Ausrichtung der Blattnässesensoren in Bezug auf Neigung wurde bei allen Stationen gleich vorgenommen. Die zweite Station in dem jeweiligen Erziehungssystem erfasst nur die Blattnässe (analoge Anordnung der fünf Sensoren), Lufttemperatur und relative Feuchte (Abbildung 2.3.6.2 rechts). Alle Stationen sind mit Datenloggern (CRX1000 der Firma Campbell Scientific) zur kontinuierlichen Datenaufzeichnung ausgestattet, die Stromversorgung erfolgt mittels Akkus. Die zeitliche Auflösung der Messwerte beträgt eine Minute.

Abbildung 2.3.6.2: Voll ausgestattete Station (links) mit zusätzlichem Globalstrahlungsgeber und 2D Wind Sonic, sowie einfache Station (rechts) zur Erfassung der Blattnässe, Lufttemperatur und relativen Feuchte im Bestand.

Bei der Auswahl der Blattnässesensoren wurde das gleiche Modell wie an der ASTA Station gewählt, um Unterschiede, die durch verschieden Sensoren und Messkonzepte entstehen, ausschließen zu können. Es handelt sich um kapazitiv messende Fühler, die schwach auf relative Feuchte und stark auf kondensierende Nässe reagieren. Die Blattnässesensoren nach Hoffmann werden seit 1990 in verschiedenen Messnetzen wie z.B. DLR Rheinland Pfalz oder LFL Bayern eingesetzt. Es handelt sich um neu angeschaffte Sensoren. Somit kann eine unterschiedliche Alterung weitgehend ausgeschlossen werden.

2.3.7 PIWI Monitoring

Im Jahr 2022 wurden verschiedene Bonituren an den pilzwiderstandsfähigen Sorten am Standort Remich (49,545 N; 6,354 W) durchgeführt, um eventuell vorhandene Sortenunterschiede zu erkennen und die Sorten besser charakterisieren zu können. Die untersuchten Sorten sind in Tabelle 2.3.7.1 dargestellt. Als Kontrolle diente die traditionelle Sorte Rivaner.

Die pilzwiderstandsfähigen Sorten und die Kontrollsorte Rivaner wurden an zwei Terminen zur Vollblüte sowie zur Erbsengrösse der Beeren mit Pflanzenschutzmitteln behandelt (reguläre Spritzung Nr. 4 und 6).

Standort	Sorte	Unterlage	Pflanzjahr
Remich	Cabaret Noir	SO4	2014
Remich	Helios	5BB	2016
Remich	Muscaris	SO4	2016
Remich	Solaris	SO4	2016
Remich	Souvignier Gris	SO4	2016
Remich	Villaris	SO4	2012
Remich	Johanniter	125AA	2011
Remich	Sauvignac	SO4	2017
Remich	Calardis Blanc	SO4	2019
Remich	Cabertin	SO4	2019
Remich	Bronner	5BB	2011
Remich	Cabernet Blanc	Binova	2011
Remich	Pinotin	Binova	2011
Remich	Divico	n.a	2010
Remich	Rivaner	SO4	2016

Tabelle 2.3.7.1 Untersuchte pilzwiderstandsfähige Sorten sowie die traditionelle Kontrollsorte Rivaner

2.3.8 Sonnenbrandversuch

Im Sonnenbrandversuch am IVV wurde die Wirkung von Kaolin als Schutz gegen Sonnenbrand an der Sorte Riesling untersucht. Gleichzeitig wurden zwei Termine der Entblätterung berücksichtigt. Um einen gleichmäßigen Belag zu erzielen, wurde das Netzmittel BreakThru verwendet. Die Behandlungsmaßnahmen sowie Terminierung der Entblätterung sind Tabelle 2.3.8.1 zu entnehmen. Versuchsglied 1 diente als unbehandelte Kontrolle.

In den Versuchsgliedern 7 und 8 wurde außerdem das GrapeGuard (20kg/ha) als weiteres Mittel gegen Sonnenbrand getestet sowie der Effekt des Netzmittels BreakThru.

Die frühe Entblätterung erfolgte am 16.06.22, während die späte Entblätterung am 11.07.22 durchgeführt wurde. Die Ausbringung der Mittel erfolgte einmalig am 11.07.22 mittels dem rückentragbaren Sprühgerät SR 450 der Firma Stihl. Eine erneute Applikation war nicht notwendig, da keine nennenswerte Abwaschung durch Niederschläge erfolgte.

Versuchsglied	Entblätterung	Behandlung
1	ohne	ohne Behandlung
2	ohne	Cutisan 5%, BreakThru 0,075% ab BBCH 75 vor Hitzewelle in Traubenzone
3	früh beidseitig, BBCH 71	ohne Behandlung
4	früh beidseitig, BBCH 71	Cutisan 5%, BreakThru 0,075% ab BBCH 75 vor Hitzewelle in Traubenzone
5	spät beidseitig, nach BBCH 75, vor Hitzeperiode	ohne Behandlung
6	spät beidseitig, nach BBCH 75, vor Hitzeperiode	Cutisan 5%, BreakThru 0,075% ab BBCH 75 vor Hitzewelle in Traubenzone
7	früh beidseitig, BBCH 71	GrapeGuard ab BBCH 75 vor Hitzewelle in Traubenzone
8	früh beidseitig, BBCH 71	GrapeGuard + Netzmittel (0,075% BreakThru) ab BBCH 75 vor Hitzewelle in Traubenzone

Tabelle 2.3.8.1: Versuchsglieder im Sonnenbrandversuch

2.4 Auswertung

2.4.1 Monitoring S. titanus

Die Gelbfallen wurden an allen Standorten im zweiwöchentlichen Abstand ersetzt und eine Bestimmung der gefangenen Arten durchgeführt (Abb. 2.4.1.1, Beispiel).

Abbildung 2.4.1.1: Gelbfalle vom Standort Wellenstein.

2.4.2 Befallsbonituren Falscher Mehltau

Bonituren zur Erfassung des Befalls durch den Falschen Mehltau im Versuch Y erfolgte gemäß dem für *Botrytis cinerea* beschriebenen Siebenklassen-Bonitur-Schema zu verschiedenen Zeitpunkten im Laufe der Vegetationsperiode an den Blättern. In diesem Bericht werden lediglich die Ergebnisse der letzten Bonitur angegeben. Pro Parzelle wurden 100 Blätter begutachtet.

In Versuch Y erfolgte die Bonitur des Blattbefalls durch den Falschen Mehltau im etwa 7tägigen Rhythmus (je nach Entwicklung des Befalls) jeweils am Termin der fernerkundlichen Messungen aus der Luft.

2.4.3 Erfassung des Fluges und der Eiablage durch Drosophila suzukii

Die Auswertung der Fallenfänge erfolgte getrennt nach männlichen und weiblichen Kirschessigfliegen mittels Binokular (Abb. 2.4.3.1).

Abbildung 2.4.3.1: Männliche Kirschessigfliegen.

Die Bonitur der Eiablage erfolgte an jeweils 50 Einzelbeeren pro Parzelle, welche aus ca. 15 im Weinberg entnommenen Traubenteilen stammten. Mittels Binokulars wurden die Einzelbeeren von allen Seiten untersucht und die Anzahl der abgelegten Kirschessigfliegen-Eier erfasst (Abb. 2.4.3.2).

Abbildung 2.4.3.2: Bonituren der Eiablage und des Larvenbesatzes unter dem Binokular.

2.4.4 <u>Bonituren in den Freilandversuchen zur Bekämpfung der</u> <u>Kirschessigfliege</u>

Pro Versuchsglied und Wiederholung wurde in beiden Versuchen eine Riga-Becherfalle in der Traubenzone befestigt und diese wöchentlich ausgezählt und ersetzt.

Weiterhin wurden in beiden Versuchen wöchentlich 15 Traubenteile entnommen und an 50 Beeren die Eiablage erfasst.

Die Auswertung der Fangzahlen und der Eiablage erfolgte wie in Kapitel 2.4.3 beschrieben.

2.4.5 Bonituren in den pilzwiderstandsfähigen Sorten

Zur Erfassung des Befalls durch den Falschen Mehltau wurde an einem Termin eine Bonitur gemäß dem für *Botrytis cinerea* beschriebenen Siebenklassen-Bonitur Schema an den Blättern durchgeführt. Pro Sorte wurden 100 Blätter untersucht. Die Erfassungen zur Kirschessigfliege in den pilzwiderstandsfähigen Sorten ist im jeweiligen Kapitel zum Monitoring der Kirschessigfliege zu finden.

Außerdem wurde einmalig eine Bonitur zur Erfassung von Sonnenbrandschäden an den Beeren duchgeführt. Pro Sorte wurden 60 Trauben erfasst und mit einer Skala von 0 bis 100 Prozent in 5 Prozent-Schritten bonitiert.

Weiterhin wurden an zwei Terminen Reben, an denen sich Blattgallen der Reblaus fanden, in allen Sorten gezählt sowie entfernt.

2.4.6 <u>Fernerkundliche Verfahren zur Befallsdifferenzierung im Versuch</u> <u>Y</u>

Im Folgenden werden die erhobenen Fernerkundungsdaten und deren Vorprozessierung beschrieben.

2.4.6.1 Drohnengestützte Messungen

In der Saison 2022 wurde, wie in 2.3.4 beschrieben, mit drei Kamerasystemen geflogen. Dabei wurden mit der Headwall Nano und der DJI Zenmuse H20T Nadir-Aufnahmen akquiriert und mit der DJI-P4 Kamera der Uni Trier wurden sowohl Nadir als auch Schrägaufnahmen erhoben.

Die Definition der Wolkensituation wird in Tabelle 2.4.6.1.1 dargestellt. Die Wolkenbedingungen werden in fünf Klassen angegeben, um eventuelle Einflüsse der Wolkenbedingungen auf die Ergebnisse analysieren zu können.

Wetterbedingung	Beschreibung	Symbol
Sonnig	Himmel ist auch im größeren Umfeld wolkenfrei, ideale Flugbedingungen	*
Leicht bewölkt	Leichte oder dichtere Bewölkung im näheren Umfeld, Weinberg kann bei sonnigen Bedingungen beflogen werden, jedoch sind leichte Qualitätsverluste möglich	• 🔆
Bewölkt	Schwere und dichte Bewölkung in und um das Untersuchungsgebiet, Datenqualität wird nachteilig beeinflusst	
Leichte Cirrus	Schwache Cirrus-Wolken im Umfeld des Weinbergs, nur geringer Einfluss auf Datenqualität zu erwarten.	\bigcirc
Dichte Cirrus	Viele und dichte Cirrus-Wolken, auch sichtbar während des Überfluges, Datenqualität beeinträchtigt.	ල

Tabelle 2.4.6.1.1: Beschreibung der Wetterbedingungen zu den Flugterminen

Die folgende Tabelle 2.4.6.1.2 gibt einen Überblick über alle Befliegungen der 6 Versuchsjahre und die Einstrahlungsbedingungen während der Flüge:

	Тал	Matter	Deden			Symptomklasse					
YYYYMMDD	Tag	vvetter	Boden	BBCH	0	5	10	25	50	75	100
20170601	T1	<u> </u>		58							
20170613	T2	*		69							
20170626	Т3	<u>*</u>		73-75							
20170713	T4	<u>*</u>		79							
20170726	T5	<u>*</u> -		79							
20170807	T6	<u> </u>	trocken	81							
20170822	T7	<u> </u>	feucht	85							
20180530	Т0	<u>*</u> -									
20180606	T1	<u>*</u> -	trocken	68							
20180620	T2	*	trocken								
20180703	Т3	*	trocken	77							
20180716	T4	*	trocken	79							
20180730	T5	<u>*</u>	trocken								
2019											
20190605 (obl+nad)	то	<u>*</u> -									
20190618 (oblunad)	T1	- <u>.</u>	trocken	61							
20190626	T2	- <u>–</u>	trocken	71-73							
(obi+had) 20190709	ТЗ		trocken	75					few		
(obl+nad)	15	~	liocken	15							
20190723		1									
(obl+nad) (only	14	- 	trocken								
20190730 (oply									few	few	
LC)	T4	*		79-81					10.00	10.00	
20190808											
Headwall nad.,	T5	- `` -	trocken								
no Gamaya											
20190903 (all	T6	- <u>)</u> -	trocken								
urones, no LC)		112									

Tabelle 2.4.6.1.2: Flugtage, Wetterbedingungen, Wachstumsstadien der Pflanzen und
Krankheitsklassen von Peronospora in den Jahren 2017, 2018, 2019,
2020, 2021 und 2022

YYYYMMDD	Tag	Wetter	Boden	Lufttemp	BBCH			Syr	nptom	klasse		
2020				2m		0	5	10	25	50	75	100
20200514	то	<u>×</u>										
(nad, Nano+Teax)	10	—										
20200526	Т1	6	trocken		55-57							
(nad, Nano+Teax)	••	ŝ	TOORCH		00 07							
20200608	Т2		trocken		65							
(nad, Nano+Teax)	12	- 🔨	trookern		00							
20200624		14										
(nad,Nano+Teax+MicaSen	13		trocken		75							
se)												
20200701 (pad Napa Taax)	T4	- <u>`</u>										
(1au, 1vallo+reax)												
(nad Nano+Teax+	T5	- <u>`</u>	trocken									
MicaSense)												
20200722												
(nad, Nano+Teax+	T6	- <u>`</u> ,			79							
MicaSense)												
20200730	Т7	- <u>`</u>	trocken									
(nad, Nano+Teax)		1					ļ					
20200812	Т8	- <u>`</u> -	trocken									
(nad, Nano+Teax)		Ϋ́,						10				100
2021						0	5	10	25	50	75	100
20210707		14		14:45:								
(nad. Nano + Teax (14:45	10		feucht	23°C	73 - 75							
Uhr) + DJI P4)				40.05.								
20210719 (nod Nana J Taay (12)25		12		13:35:								
(1au. Nail0 + Teax (13.35))	T1		feucht	25 0	75 - 77							
DJI P4)		-										
20210811				14:35:								
(nad. Nano + Teax (14:35	Т2			25°C								
Uhr)+	12											
DJI P4)						0	5	40	05	50	75	100
2022				40.00		0	5	10	25	50	75	100
20220614 (nod None + D // Zammers	то	<u></u>	trockon	13:22:	73 - 75							
(nad. Nano + DJI Zenmuse) (13.22) + D II P4)	10	1	liocken	24,0 C	13-15							
20210628				14:33								
(nad. Nano + DJI Zenmuse	T1		trocken	26,1°C	75 – 77							
(14:33) + DJI P4)			_	-,								
20220705				14:36:								
(nad. Nano + DJI Zenmuse	T2	.	trocken	26,0°C								
(14:36)+ DJI P4)		•										

Tabelle 2.4.6.1.2: (fortgesetzt)

Die Befliegungen wurden jeweils bei maximalem Sonnenstand gegen 12:00-13.00 Uhr MESZ im Nadir-Modus durchgeführt; die Thermaldaten wurden bei möglichst hohen Temperaturen erhoben (ca. um 14.00 Uhr), um maximale Kontraste zu bekommen.

2.4.6.2 Datenverarbeitung und Analysen

Headwall – Nano Daten:

Die Headwall – Nano – Daten wurden anhand der entwickelten Prozessierungskette und mit derselben Methode wie in den Jahren 2020 und 2021 vorverarbeitet. Danach wurden die Daten radiometrisch mittels der am Boden gemessenen Spektren der Referenzpanele mit der *Empirical Line Correction* korrigiert. Dabei wurden die *in situ* Messungen vom 19. Juli 2021 in Kombination mit den im jeweiligen Bild extrahierten Panels verwendet, um alle Zeitpunkte auf eine Referenz zu kalibrieren und keine Beleuchtungseffekte zwischen den Zeitpunkten zu haben. Dies gewährleistet eine kombinierte Auswertung und Modellbildung von mehreren Zeitpunkten. In diesem Fall können wir auch die Daten von den beiden Jahren 2021 und 2022 kombinieren und die Übertragbarkeit testen. Für 2020 war dies nur eingeschränkt möglich, da hierfür die in 2021 angeschafften Referenzpanele nötig sind, um eine ausreichende Qualität der Daten zu gewährleisten. Somit können kleine Offsets zwischen den Daten aus verschiedenen Jahren auftreten, was eine Kombination nicht ausschließt, aber erschwert.

Die 2021 in Zusammenarbeit mit der Universität Trier entwickelte automatisierte Prozessierungskette für die Multispektralkameras (Micasense und DJI-P4) wurde auf die im Jahr 2022 gemessenen Daten angewandt. Dies erlaubt eine schnellere Auswertung der Daten bis hin zur Erstellung von Regressionsmodellen der Bild- mit den Boniturdaten. Eine detaillierte Beschreibung befindet sich im Bericht vom Jahr 2021.

Die von der Universität Trier erhobenen hochaufgelösten Multispektraldaten wurden anhand der beschriebenen Methodik ausgewertet und eine Weinmaske (es wurden nur die Pixel zurück behalten, die zu Weinpflanzen gehören) erstellt. Diese diente als Maske für die Hyperspektraldaten sowie die Thermaldaten. Die Plots des Versuchsaufbaus wurden in den Bildern digitalisiert und extrahiert, um sie im Anschluss auszuwerten.

Die Spektren der Hyperspektraldaten wurden entsprechend ihrer Helligkeit stratifiziert. Hintergrund dabei ist die Annahme, dass sich im Bild für jeden Plot sowohl sonnenbeschienene als auch beschattete Pixel befinden, die gleichermaßen in die Berechnungen der Statistiken mit eingehen und deren Unterschied ggf. die Information der Symptome verwässern. Sonnenbeschienene Pixel reflektieren mehr Energie und enthalten demnach auch mehr Information in ihrer spektralen Signatur als die beschatteten Pixel. Daher wurde basierend auf einem Band im Nahen-Infrarot Plateau (780 nm) eine Stratifizierung mittels der Tercentile, die den Wertebereich der Reflexionswerte in drei gleich große Teile teilt, vorgenommen. Damit wurde eine Aufteilung in beschattete, intermediäre und beleuchtete Pixel gebildet und für jede dieser 3 Teile wurden im Anschluss die Statistiken (Mittelwert, Median, Standardabweichung) berechnet. Abbildung 2.4.6.2.1 verdeutlicht das an einem Beispiel eines einzelnen Plots, die schwarz gestrichelten Linien markieren den Mittelwert jeder Klasse, die vertikale Linie das Band auf dem die Tercentile berechnet wurden. Hier wird deutlich, dass sich die drei Mittelwerte vor allem im Bereich des sichtbaren Lichts (VIS, im Bereich des "Green Peak") und auf dem NIR Plateau und Red Edge unterscheiden. Folglich lassen sich kleinere Veränderungen, die beispielsweise durch Krankheitsstress ausgelöst werden, deutlich in den Werten der Terzentile erkennen im Vergleich zum Mittelwert aller Pixel.

Abbildung 2.4.6.2.1: Stratifizierung der Plots anhand ihrer Helligkeit

Thermaldaten (DJI Zenmuse)

Thermaldaten wurden immer am selben Tag wie die Hyperspektraldaten mit Hilfe der DJI Zenmuse aufgenommen. Thermaldaten sind im Vergleich zu Daten aus dem sichtbaren oder Infrarot-Bereich deutlich kontrastärmer und wirken unscharf. Daher ist auch ihre Vorverarbeitung deutlich aufwendiger. Die Daten wurden mit Hilfe der Software Agisoft Metashape mosaikiert und die Maske aus den DJI-P4 Daten wurden ebenfalls auf diesen Datensatz angewandt. Anschließend wurde eine Normalisierung durchgeführt, um den Einfluss der Lufttemperatur sowie Effekte durch beispielsweise Windverwirbelungen zu minimieren. Hierfür wurde der Crop Water Stress Index -CWSI berechnet (s.u.).

Methoden zur Auswertung der Befallstärke Partial Least Squared Regression (PLSR):

Die PLSR ist ein multivariates statistisches Verfahren, das eine große Anzahl von co-linearen Variablen auf wenige nicht korrelierte unabhängige latente Variablen reduziert und die Varianz zwischen den beiden Matrizen X und Y dabei maximiert (Wold et al. 2001). In der vorliegenden repräsentiert die latente Variable die Strukturinformationen, die in den Studie Reflexionsmessungen (X) enthalten sind, um die abhängige Variable (Y) bzw. den Befallsgrad vorherzusagen. Der Vorteil der PLSR ist die Reduktion eines großen Merkmalsraums auf wenige latente Faktoren (Udelhoven et al. 2013), was insbesondere bei Hyperspektraldaten mit einem hohen Grad an Autokorrelation einen wesentlichen Vorteil bietet. Aufgrund der vielen schmalen und eng benachbarten Bänder sind die Werte in bestimmten Bereichen im Spektrum sehr ähnlich oder identisch zu den Werten in der spektralen Nachbarschaft (=Autokorrelation). Viele Algorithmen haben mit dieser Art von Daten Schwierigkeiten, da häufig immer wieder die gleiche Information eingeht. Eine Vorselektion von informationsreichen Bereichen und eine Reduktion der Daten auf bestimmte Faktoren (latente Variablen) wie sie bei der PLSR durchgeführt wird, ist daher für Hyperspektraldaten besser geeignet und liefert in der Regel gute Ergebnisse.

Vegetationsindices:

Wie auch in den vergangenen Jahren wurden eine Reihe etablierter Vegetationsindices berechnet und für die Schätzung der Befallsstärke getestet. Die Auswahl der Indizes berücksichtigt zwei Merkmale. Es wurden zum einen Indizes gewählt, die besonders sensitiv auf Pigmentveränderungen und andere biochemische Prozesse im Blatt reagieren. Hierzu zählt beispielsweise der PRI (Photochemical Reflection Index), der sensitiv für photosynthetische Aktivität bzw. die Lichtnutzungseffizienz ist oder auch der Chlorophyll Index. Diese Indizes sind besonders für ein frühes Stadium der Krankheit geeignet, wenn erste Symptome in Form von Chlorosen und anderen Pigmentänderungen auftreten. Zum anderen wurden auch Indizes berücksichtigt, die insbesondere für die Blattmasse, den LAI (Leaf Area Index), sensitiv sind. Diese Indizes sind v.a. für einen stärkeren Befall geeignet, wenn die Reben aufgrund von *Peronospora* Blätter verlieren. Hierzu zählen z.B. der NDVI oder der NDRE2. Bei Auswertungen der letzten Jahre hatte sich bereits gezeigt, dass diese Indizes bei hohem Befall gut geeignet sind.

Index	Gleichung	Anwendung/Referenz				
NDVI -Normalized difference vegetation index (Rouse et al. 1973.)	$NDVI = (R_{800} - R_{670}) / (R_{800} + R_{670})$	Erkennung von grüner Vegetation aufgrund der Reflexionseigenschaften von Chlorophyll und Mesophyll				
Chlorophyll index $(\mathbf{P}_{1}, \mathbf{P}_{2}) = (\mathbf{P}_{2}, \mathbf{P}_{2}) = 1$		Quantifizierung des Chlorophylls				
(Rouse et al., 1973) red edge	$G_{red edge} = (R_{780} / R_{710}) - 1$	(Gitelson et al., 2003)				
Red edge inflection point	$REIP = 700 + 40 \big((R_{670} + R_{780})/2 - R_{700} \big) / (R_{740} - R_{700}))$	Bestimmung des Maximums des sog. Red Edge Inflection points, der sensitiv für den Chlorophyllgehalt ist (Herrmann et al., 2011)				
Chl. Chlorophyll indov	Chl = (D D)/(D D)	Quantifizierung des Chlorophylls				
Chil-Chilotophyli Index	$\operatorname{CIII} = (\mathbf{K}_{570} - \mathbf{K}_{700}) / (\mathbf{K}_{515} - \mathbf{K}_{700})$	(Yu et al., 2014)				
PRI -Photochemical reflection index	$PRI = (R_{531} - R_{570}) / (R_{531} + R_{570})$	Photosynthetische Aktivität und Lichtnutzungseffizienz basierend auf dem Xanthophyllgehalt (Gamon et al., 1992)				
NDRE	NDRE = $(R_{865} - R_{740}) - (R_{865} + R_{740})$	Ähnlich zu NDVI, aber unter Nutzung des NIR und RedEdges (Gitelson and Merzylak, 1994))				
NDRE 2	NDRE2 = $(R_{740} - R_{665})/(R_{740} + R_{665})$	Ähnlich zu NDVI, aber unter Berücksichtigung des RedEdge (Barnes et al. 2000)				
Downy mildew index 1	$DMI_1 = (R_{682}) / (R_{800})$	Kontrolliertes Experiment zur Entwicklung verschiedener Indizes zur Bestimmung von frühem Peronospora Befall				
Downy mildew index 2	$DMI_2 = (R_{550} - R_{680}) / (R_{550} + R_{680})$	(Oerke et al., 2016)				

 Tabelle 2.4.6.2.1:
 Auswahl bereits publizierter Indizes, die zur Erfassung von Peronospora

 nützlich sein könnten

Crop Water Stress Index- CWSI

Der CWSI wurde entwickelt, um Trockenstress auf landwirtschaftlichen Flächen fernerkundlich zu bestimmen. Aufgrund seiner Sensitivität für Transpiration ist der CWSI auch geeignet, um krankheitsinduzierten Stress zu detektieren, welcher sich häufig ebenfalls auf die Transpiration der Pflanze auswirkt. Er basiert auf der Annahme des linearen Zusammenhangs von Wasserstress und Wasserdampfdefizit CWSI= $1 - (ET_{act}/ET_{pot})$ (Jackson et al. 1981). Eine theoretische Bestimmung der CWSI verlangt eine der Modellierung Evapotranspiration und setzt umfangreiche Messung voraus (Globalstrahung, Windgeschwindigkeit, aerodynamische und Vegetationswiderstände etc). Eine vereinfachte Form ist der bildbasierte CWSI. Hierbei werden Referenztargets im Bild benötigt, die einmal wassergesättigt und einmal trocken (= ohne Transpiration) sind. Alternativ kann man auch die 5% wärmsten und 5% kältesten Pixel extrahieren, um die Referenzen T_{wet} und T_{dry} zu bestimmen. Der CWSI wird dann für jedes Pixel (T_c= Temperatur canopy) wie folgt berechnet:

 $CWSI = (T_c-T_{wet}) / (T_{dry}-T_{wet}).$

2.4.7 Monitoring der Esca-symptomatischen Stöcke im Versuch AA

Anfang September 2022 wurden die Weinberge im Bereich "Berg" hinsichtlich (i) Symptomen durch den Esca-Komplex sowie (ii) Fehlstöcken visuell bonitiert und kartographisch dokumentiert. Es erfolgte wie in den beiden Vorjahren eine Differenzierung der symptomatischen Stöcke in folgende Befallsklassen:

- 0 Symptom-frei
- 1 Apoplexie (plötzliches Absterben)
- 2 Blattsymptome (Tigerstreifen)
 - a) leichte Symptome
 - b) mittlere Symptome
 - c) starke Symptome
- 3 Beerensymptome ("black measels")
 - a) leichte Symptome
 - b) mittlere Symptome
 - c) starke Symptome
- X Fehlstock

Die fernerkundliche Auswertung der Versuchsfläche erfolgt im Projekt "MonESCA".

2.4.8 <u>Auswertung der Thermaldaten zur Analyse des</u> <u>Sonnenbrandversuchs</u>

Am 02. August 2022 wurden thermale Schrägaufnahmen erhoben. Dabei wird ein ca. 45° Beobachtungswinkel eingestellt und die Reihen werden von der Seite betrachtet (Abbildung 2.4.8.1 und Abbildung 2.4.8.2). Somit konnte der Sonnenbrandversuch analysiert werden, da hier insbesondere die Traubenzone relevant ist und behandelt wurde. Um den Einfluss des Hintergrunds zu eliminieren, wurde eine Klassifikation des Echtfarbenbildes (RGB) durchgeführt. Es wurden Trainingsdaten für die Klassen "Wein", "Gras/Zwischenbegrünung" und "Schatten" erhoben und mit Hilfe des Maximum Likelihood Klassifikators wurde das Bild klassifiziert.

Abbildung 2.4.8.1: Übersicht über den Sonnenbrandversuch und die verschiedenen Versuchsglieder (jede Farbe entspricht einem Versuchsglied). Echtfarbdrohnenbild.

Abbildung 2.4.8.2: Zoom in die Schrägaufnahme des Sonnenbrandversuchs.

Abbildung 2.4.8.3: Schrägaufnahmen der Thermaldaten mit ausmaskiertem Hintergrund (Trockenes Gras/Kraut, Boden und Schatten)

Anschließend wurden die Versuchsglieder des Sonnenbrandversuchs auf der RGB-Darstellung digitalisiert. Größere Lücken im Bestand erscheinen hier problematisch, da die geringere Beschattung Einfluss auf die Temperatur hat (siehe oben). Die Thermaldaten wurden geometrisch an die RGB-Daten angepasst, so dass die Maske für den Hintergrund und die Digitalisierung der Versuchsglieder übertragen werden kann (Abbildung 2.4.8.3).

Neben den Schrägaufnahmen wurden am 19. Juli 2022 Nadiraufnahmen mit der Thermalkamera durchgeführt. Dieser Tag war der heißeste Tag des Jahres und die Daten wurden visuell interpretiert sowie absolute Temperaturunterschiede innerhalb des Weinbergs analysiert.

3 Ergebnisse und Diskussion

3.1 Versuch L Monitoring Scaphoideus titanus

3.1.1 Fangzahlen

Tabelle 3.1.1: Fangzahlen von *S. titanus* im Rahmen des Monitorings entlang der Luxemburger Mosel im Jahr 2022.

Standort	01.08.	16.08.	29.08.	12.09.	26.09.	
A Wellenstein	-	-	-	-	-	
B Remich-IVV	-	-	-	-	-	
C Ehnen	-	-	-	-	-	
D Ahn	-	-	-	-	-	

Im Jahr 2022 konnte, wie in den acht vorangegangenen Jahren, an keinem der Monitoring-Standorte das Auftreten des Vektors der *Flavescence dorée* beobachtet werden (Tab. 3.1.1).

3.2 Surveillance des activités de vol et de ponte de Drosophila suzukii

La surveillance des activités de vol et de ponte de D. suzukii a commencé début août 2022 avec l'installation des pièges le 02 août. Concernant les activités de vol, la surveillance se concentre sur les variétés à maturation précoce (Pinot noir précoce, Pinot noir, Pinotin et Cabaret noir) ainsi que des plantes hôtes non cultivées telles que le lierre et un mûrier. Au vignoble, l'activité de vol ne présente pas de tendance commune entre les cépages étudiés, mis à part une augmentation entre le 09.08 et le 16.08. Ensuite, Pinotin et un clone de Pinot noir présentent un nombre croissant de mouches alors que le second clone de Pinot noir et le Cabaret noir stagnent et le pinot noir précoce diminue. L'activité de vol mesurée est très variable selon le cépage, le piège situé dans le pinot noir 109 présente le nombre de mouches le plus élevé début septembre. Concernant le piège installé dans le lierre, il varie sur toute la période étudiée avec globalement un très faible nombre de mouches capturées, 4 au maximum par semaine. Dans le mûrier, le nombre de mouches piégées augmente très fortement et atteint un maximum le 16.08 avec 268 mouches puis diminue fortement jusqu'au 23.08 avant de diminuer plus faiblement jusqu'à atteindre 4 mouches piégées le 13.09. C'est le piège dans lequel le nombre le plus important de mouches est capturé sur l'ensemble de la saison (Tab. 3.2.1).

Concernant l'activité de ponte, aucun œuf n'a été observé lors de la saison 2022 (Tab. 3.2.1). Dans les cépages pour lesquels seulement la ponte a été étudiée, Souvignier gris, Sauvignac, Cabertin et Divico, aucun œuf n'a été enregistré.

		0	2.08.2022	09.08.2022		0	9.08.2022	2-16.08.2022		1	6.08.2022	-23.08.2022	
Localité	Variété	Ds. Fem	Ds. Male	#Oeufs	°Oe	Ds. Fem	Ds. Male	#Oeufs	°Oe	Ds. Fem	Ds. Male	#Oeufs	°Oe
Remich	Pinotin	0	0	0	56	3	0	0	61	2	2	0	72
Remich	Lierre	1	0	х	х	2	1	х	Х	0	0	х	Х
Remich	Mûrier	26	66	х	х	87	181	х	х	13	32	х	х
Remich	Pinot noir précoce	0	0	0	77	3	0	0	78	1	1	0	86
Remich	Pinot noir (130)	0	0	х	x	0	2	0	66	6	0	0	86
Remich	Pinot noir (109)	3	1	х	x	5	2	0	62	5	2	0	76
Remich	Cabaret	1	0	0	69	1	1	0	82	2	0	0	88

Tab. 3.2.1 : Nombre de mouches *D. suzukii* capturées dans les pièges (Ds. Fem pour les femelles et Ds. Male pour les males), nombre d'œufs dénombrés dans 50 baies individuelles et degré de maturité des baies pour les différents sites de surveillance en 2022.

		23.08.2022-30.08.2022 30.08.					0.08.2022	8.2022-06.09.2022 06.0				.09.2022-13.09.2022		
Localité	Variété	Ds. Fem	Ds. Male	#Oeufs	°Oe	Ds. Fem	Ds. Male	#Oeufs	°Oe	Ds. Fem	Ds. Male	#Oeufs	°Oe	
Remich	Pinotin	2	0	0	80	3	0	0	81	0	0	0	84	
Remich	Lierre	3	1	х	х	4	0	х	х	0	0	х	Х	
Remich	Mûrier	15	8	Х	х	8	14	х	х	1	3	х	х	
Remich	Pinot noir précoce	2	0	0	92	x	х	x	х	х	х	x	х	
Remich	Pinot noir (130)	5	0	0	90	3	1	x	х	x	х	x	x	
Remich	Pinot noir (109)	0	0	0	82	11	3	x	х	x	х	x	x	
Remich	Cabaret noir	11	0	0	99	1	2	0	101	x	x	x	x	

3.3 Expériences de lutte contre Drosophila suzukii

3.3.1 Essais de produits naturels contre D. suzukii au vignoble

Dès la première observation, des mouches *D. suzukii* ont été identifiées dans les pièges. L'activité des mouches a été relativement faible sur la période de piégeage avec une moyenne maximale de 4.25 mouches par piège dans le contrôle le 06.09. Des analyses statistiques ont été réalisées afin de déterminer l'effet des traitements sur l'activité des mouches. Quand chaque traitement est étudié indépendamment, aucune différence significative n'est observée entre les différentes semaines de piégeage. Quand chaque date est étudiée indépendamment, seul le 06.09 présente un nombre de mouches statistiquement plus élevé dans la modalité non traitée comparée à celle traitée avec le Surround seul (Tab. 3.3.1.1 et Abb. 3.3.1.1). Au vu du faible nombre de mouches présentes, cet essai ne permet pas de conclure à un effet répulsif du produit ni à une augmentation de l'efficacité grâce à l'ajout de BreakThru.

<u>Otrot</u> á sie	Nombre moyen de mouches <i>D. suzukii</i> capturées par piège									
Strategie	02.08. -09.08	09.08- 16.08	16.08- 23.08	23.08- 30.08	30.08- 06.09	06.09- 13.09				
Contrôle non traité	0.25	1.5	1.5	1.75	4.25	1				
Surround 2%	0.5	2.5	1	1.25	0.5	0				
Surround 2% + BreakThru 0.075%	0	1.5	1.25	0.75	2	0				

Tab. 3.3.1.1:Nombre d'individus de *D. suzukii* piégés dans l'expérience T. Moyennes de
4 répétitions.

Abb. 3.3.1.1 : Histogramme de la moyenne des *D. suzukii* piégées en fonction de la date d'observation et du traitement. Les barres verticales représentent l'écart type. Les lettres différentes montrent une différence significative observée le 06.09.

Concernant l'activité de ponte des mouches *D. suzukii*, aucun œuf n'a été observé dans les baies durant toute la durée de l'essai. L'effet des traitements sur la ponte n'a donc pas pu être étudié.

Ctratéria	Nombre d'oeufs de <i>D. suzukii</i> comptés dans 50 baies									
Strategie	02.08- 09.08	09.08- 16.08	16.08- 23.08	23.08- 30.08	30.08- 06.09	06.09- 13.09				
Contrôle non traité	0	0	0	0	0	0				
Surround 2% Surround 2%	0	NA	NA	NA	NA	0				
+ BreakThru 0.075%	0	NA	NA	NA	NA	0				

Tab. 3.3.1.2:Nombre d'œufs dénombrés dans 50 baies dans l'expérience T .Moyennes de 4 répétitions.

3.4 Monitoring der pilzwiderstandsfähigen Sorten

	-							
Tabelle	3.4.1.1:	Befa	allss	tärken	(in	%)	des	
Falsche	n Mehlt	aus	an	den	Blätt	ern	am	

30.06.2022	
Sorte	Befallsstärke
Cabaret Noir	0
Helios	0
Muscaris	0
Solaris	0
Souvignier Gris	0
Villaris	0
Johanniter	0
Sauvignac	0
Calardis Blanc	0
Cabertin	0
Bronner	0
Cabernet Blanc	0
Pinotin	0
Divico	0
Rivaner	0

Am 30.06.2022 konnten in keiner Sorte Blattsymptome festgestellt werden. Die trockene Witterung und der damit einhergehende geringe Krankheitsdruck hielt in den darauf folgenden Sommermonaten an, weshalb keine zweite Bonitur durchgeführt wurde.

3.4.1 Befall durch Falschen Mehltau

3.4.2 Sonnenbrandschäden

Abbildung 3.4.2.1: Schadensstärke (in %) von Sonnenbrand an Beeren

Am 21.07.2022, zwei Tage nach der Hitzewelle vom 19.07.22, wurde eine Bonitur auf Sonnenbrandschäden in den PIWI-Sorten durchgeführt. Es wurden Schadensstärken zwischen 0% und 2% erfasst. Während in den Sorten Souvignier Gris, Villaris, Cabertin, Bronner, Cabernet Blanc und Divico keine Schäden durch Sonnenbrand erfasst wurden, erreichte nur die Sorte Solaris eine Schadensstärke von 2%.

3.4.3 Befall mit Reblaus Blattgallen

Sorte	Anteil Reben mit Blattgallen (%) am 05.05.2022	Anteil Reben mit Blattgallen (%) am 16.06.2022
Cabaret Noir	0,0	0,0
Helios	0,0	2,8
Muscaris	28,4	7,5
Solaris	10,9	3,6
Souvignier Gris	42,5	30,0
Villaris	0,0	0,0
Johanniter	0,0	0,0
Sauvignac	0,0	0,9
Calardis Blanc	0,0	0,0
Cabertin	0,0	3,2
Bronner	27,6	4,8
Cabernet Blanc	0,0	0,0
Pinotin	0,0	0,0
Divico	0,0	0,0
Rivaner	0,0	0,0

Am 05.05.2022 fiel der Befall durch Blattgallen der Reblaus in der Sorte Souvignier Gris auf, weshalb alle Sorten auf Blattgallen untersucht wurden. Souvignier Gris zeigte mit 42,5% befallenen Reben den höchsten Befall, gefolgt von Muscaris (28,4%) und Bronner (27,5%). Nach der Bonitur wurden die Blattgallen abgesammelt, um eine weitere Verbreitung möglichst zu vermeiden. Am zweiten Termin zeigten sich bei insgesamt sieben Sorten ein Befall, der jedoch eher gering ausfiel (vgl. Tab. 3.4.3.1). Nur bei Souvignier Gris zeigte sich erneut ein hoher Anteil von Reben mit Blattgallen (30,0%).
3.5 Versuch Y Fernerkundliche Erkennung der Peronospora

3.5.1 Befallsverlauf an den Blättern

Tabelle 3.5.1: Befallsstärken (in %) des Falschen Mehltaus an den Blättern im Verlauf des Jahres im Versuch Y im Jahr 2022. Inok = Inokulation (absichtliche Infektion).

VG	Strategie	Infektionstyp	13.06.	27.06.	05.07.
1	unbehandelte Kontrolle	ohne künstliche Inok	0,00	0,41	0,34
2	unbehandelte Kontrolle	künstliche Inok	0,04	0,69	0,86
3	integriert	künstliche Inok	0,02	0,80	0,72
4	Kupfer	künstliche Inok	0,00	0,15	0,07
5	Phosphorige Säure	künstliche Inok	0,00	0,02	0,04
6	Kupfer +	künstliche Inok	0,00	0,08	0,12
	Phosphorige Säure				
7	Kupfer + Phosphorige S. bis	künstliche Inok	0,00	0,11	0,16
	BBCH 69				
8	Kupfer + Fytosave	künstliche Inok	0,02	0,63	0.71

Erste Blattsymptome wurden am 13.06. beobachtet. Am nächsten Boniturtermin kam es zu einem sehr leichten Befallsanstieg. Am letzten Boniturtermin wurden Befallsstärken am Blatt zwischen 0,04 (VG 5) und 0,86% (VG 2) erfasst (Tab. 3.5.1).

Am letzten Boniturtermin (05.07.2022) wurden folgende Wirkungsgrade in Bezug auf das Versuchsglied 2 erzielt: 16 (VG 3), 92 (VG 4), 95 (VG 5), 86 (VG 6), 81 (VG 7) und 18 % (VG 8). Die Variante mit durchgehender Kupfer-Behandlung sowie mit durchgehender Behandlung mit Phosphoriger Säure zeigten sehr gute Wirkungsgrade an den Blättern. Auch die Kombination von Kupfer und Phosphoriger Säure erzielte gute Wirkungsgrade, während der Zusatz von Fytosave den Wirkungsgrad nicht erhöhte.

Die angestrebte Variabilität innerhalb des Versuchsfeldes stellte sich im Jahr 2022 nicht ein. Am letzten Boniturtermin wurden in den 32 Plots Befallsstärken zwischen 0,04 und maximal 0,86% erfasst. Dies hängt mit dem sehr geringen Krankheitsdruck durch *Peronospora* im Jahr 2022 zusammen, bedingt durch die trockene Witterung während der Vegetationsperiode. Da keine Zunahme der Symptome mehr zu verzeichnen war, fand der letzte Boniturtermin am 05.07.2022 statt.

Error! Reference source not found.Error! Reference source not found.

3.5.2 Ergebnisse der fernerkundlichen Untersuchungen

Ergebnisse der PLSR-Modellierung mit Daten der Headwall-Nano:

Die PLSR-Modelle wurden basierend auf 216 Spektralbändern (499 nm – 978 nm) der Headwall Nano Kamera aufgebaut. Die Spektralbänder zwischen 399 – 498 nm (45 Spektralkanäle), genauso wie die Bänder zwischen 979 – 1000 nm (10 Bänder) wurden aufgrund ihres hohen *signal-to-noise*-Verhältnis nicht in die Analyse miteinbezogen. Die PLSR – Modelle, die sich auf ein einzelnes Datum beschränken, wurden einer *leave-one-out*-Kreuzvalidierung (LOO-CV) unterzogen. Eine Vorhersage war aufgrund des sehr geringen Befalls und der damit einhergehenden geringen Anzahl an Flugterminen im Jahr 2022 Jahr nicht möglich.

PLSR Modelle wurden zu den jeweiligen Zeitpunkten erstellt. Zum einen gingen alle Plots einzeln (n=32) in die Modellerstellung ein. Zum anderen wurden über die vier Wiederholungen A-D gemittelten Befallsgrade jedes Treatments erstellt und die zugehörigen gemittelten Spektren zur Berechnung der PLSR genutzt (n=8). Beide Ergebnisse für den jeweiligen Untersuchungstag sind in Abbildung 3.5.2.1 dargestellt.

Abbildung 3.5.2.1: Die Plots zeigen jeweils die gemessenen (=Bonitur, x-Achse) gegen die geschätzten (y-Achse) Befallsstärken. Sie zeigen eine Übersicht der PLSR-Modelle bezogen auf den Befliegungstermin und den dann aufgetretenen Befallsgrad mit *Peronospora viticola*. Links sind die Modelle der einzelnen Parzellen dargestellt, auf der rechten Seite die Mittelwerte der vier Wiederholungen (A-D) mit Fehlerbalken, die die Standardabweichung der Bonitur in x,y Richtung, um den Mittelwert der jeweiligen Behandlung darstellen.

Im Jahr 2022 konnten aufgrund des geringen Befalls in Folge der Hitzeperiode drei Flüge erfolgreich durchgeführt werden, wobei sowohl am zweiten (28. Juni), als auch am dritten Flugtag (05. Juli) ein Befall von maximal 1.57 % von *Peronospora* beobachtet werden konnte. Die PLSR-Modelle des zweiten und dritten Flugtages konnten den Befall mit einer Genauigkeit von 0,4% (RMSE) schätzen. Wie auch im letzten Jahr, konnte durch die Mittelwertbildung über die Wiederholungen eine Verbesserung des Modells erreicht werden mit einem RMSE der sich zwischen 0,34 bis etwa 0,37 bewegt.

Abbildung 3.5.2.2: Die Plots zeigen jeweils die gemessenen (=Bonitur, x-Achse) gegen die geschätzten (y-Achse) Befallsstärken des PLSR-Modells. Dieses Modell basiert auf den Einzelwerten des *Peronospora*-Befalls zu den Zeitpunkten T2 und T3 (n=64) im Jahr 2022 und zur Schätzung des gemittelten Befallsstärken der Zeitpunkte T2 und T3 (n=16) im Jahr 2022. Die Fehlerbalken symbolisieren die Standardabweichung der Bonitur in x,y Richtung vom jeweiligen Mittelwert.

Abb. 3.5.2.2 veranschaulicht ein PLSR-Modell kalibriert mit den diesjährigen Einzelwerten und die Schätzung der gemittelten Befallsgrade. Die Fehlerbalken (Abb. 3.5.2.2, rechts) zeigen gerade bei geringem *Peronospera* Befall die Heterogenität in den Daten auf. Diese können insbesondere durch das geclusterte Auftreten der ersten Symptome ausgehend durch die Inokulation und durch die Mittelung von acht Pflanzen entstehen. Darüber hinaus können sehr geringe Befallsstärken für den Sensor nicht sichtbar sein, falls die Symptome sich nur an der Blattunterseite oder im unteren Bereich der Pflanze befinden, die von gesunden Blättern überdeckt werden.

Abbildung 3.5.2.3: Die Plots zeigen jeweils die gemessenen (=Bonitur, x-Achse) gegen die geschätzten (y-Achse) Befallsstärken. Grundlage ist das PLSR Modell der Einzelwerte 2021 (T2 und T3) zur Schätzung des Befallsgrades (links) und Übertragung auf die gemittelten Befallsgrade zum Zeitpunkt T2 und T3 im Jahr 2022. Die Fehlerbalken symbolisieren die Standardabweichung der Bonitur in x,y Richtung vom jeweiligen Mittelwert.

Ebenfalls wurde ein Modell basierend auf den Daten von 2021 berechnet, um die Befallsgrade von 2022 zu schätzen. Das PLSR-Modell deckt in diesem Fall einen weitaus größeren Wertebereich der gemessenen *Peronospora* Befallsgrade ab (Abb. 3.5.2.3), ist dabei jedoch nicht in der Lage die geringen *Peronospora* Befallsstärken 2022 mit hinreichender Genauigkeit zu schätzen, sondern zeigt eine starke Überschätzung (Abb. 3.5.2.3, rechts).

In einem zweiten Versuch wurde die Kalibration des PLSR-Modells nur mit Werten unterhalb von 3% Befallsgrad durchgeführt und die Schätzung der mittleren Befälle 2022 wiederholt (Abb. 3.5.2.4).

Abbildung 3.5.2.4: Die Plots zeigen jeweils die gemessenen (=Bonitur, x-Achse) gegen die geschätzten (y-Achse) Befallsstärken. Die Kalibration des PLSR-Modells der Einzelwerte 2021 (T2 und T3) mit Befallsgraden < 3% (links) und Übertragung auf die gemittelten Befallsgrade zum Zeitpunkt T2 und T3 im Jahr 2022. Die Fehlerbalken symbolisieren die Standardabweichung der Bonitur in x,y Richtung vom jeweiligen Mittelwert.

Anhand von Abb. 3.5.2.4 wird deutlich, dass die Fähigkeit eines Modells zur Schätzung der Befallsstärken auch von der Kalibration und deren Wertebereich abhängig ist. Ein Modell, welches auf die globale Genauigkeit optimiert ist und einen sehr großen Wertebereich von bis zu 50% Befallsstärke abdeckt, ist nicht ausreichend optimiert, um auf Jahre mit sehr geringem Befall übertragen zu werden. Ein Vorwissen über den zu erwartenden Befall und die Auswahl eines entsprechenden Modells sind daher hilfreich.

Ergebnisse der Vegetationsindizes mit Daten der Headwall-Nano

Im Folgenden werden die Ergebnisse der fünf Vegetationsindizes genauer beschrieben, die die besten Ergebnisse gezeigt hatten. Dies waren (1) der NDVI, der eher für die Bestandsstruktur und grüne Biomasse sensitiv ist, (2) der PRI, der schon in den vergangenen Jahren insbesondere bei den Leaf Clip Messungen gute Ergebnisse gezeigt hatte und eher die photosynthetische Aktivität berücksichtigt, (3) der NDRE, der den NIR und RedEdge Bereich berücksichtigt, der sowohl sensitiv für Chlorophyll ist, aber auch von der Bestandsstruktur beeinflusst wird, (4) der NDRE2, der Wellenlängen im rot und im RedEdge nutzt und (5) der Chl, ein Chlorophyll-Index, der insbesondere die Chlorophyllpigmente in Relation zum Infrarotplateau (700 nm) berücksichtigt, und somit auch Bestandsinformation integriert.

Korrelationen zw	ischen Befallsstärke	und Vegetationsind	izes im Jahr 2022	(aggregierte Werte).
	T2 – 20	22-06-28	T3 – 20	22-07-05
Index	R ²	RMSE	R ²	RMSE
NDVI	0.19	0.26	0.03	0.36
PRI	0.38	0.23	0.01	0.31
NDRE	0.35	0.23	0.35	0.25
NDRE2	0.29	0.25	0.00	0.31
Chl	0.06	0.28	0.11	0.29

Tabelle 3.5.2.1: Überblick über Bestimmtheitsmass R² und RMSEs der verschiedenen

Einzelwerte (n=32)

Aggregierte Befallsgrade (disease severity)

Abbildung 3.5.2.5a: Übersicht des Zusammenhanges der jeweiligen Indizes jedem Befliegungszeitpunkt zu 2022 basierend auf den Einzelwerten (links) und den über die Wiederholungen A-D gemittelten Werten (rechts).

Abbildung 3.5.2.5b: Übersicht des Zusammenhanges der jeweiligen Indizes zu jedem Befliegungszeitpunkt 2022 basierend auf den Einzelwerten (links) und den über die Wiederholungen A-D gemittelten Werten (rechts).

Alle Indizes (Abb. 3.5.2.5) zeigen sehr deutliche Unterschiede zwischen den drei Zeitpunkten trotz einer einheitlichen radiometrischen Korrektur. Dies könnte einerseits an einem starken Einfluss der Phänologie liegen, der zu unterschiedlichen Gehalten von Chlorophyll und anderen Blattpigmenten im Laufe der pflanzlichen Entwicklung führt, andererseits an Veränderungen des Erscheinungsbildes der Symptome im Laufe der Epidemie. Grundsätzlich sind Vegetationsindizes eine einfache und schnelle Methode, um Daten zu analysieren und

interpretieren, aber für geringe Befallsstärken sind sie häufig nicht sensitiv genug und die Übertragbarkeit ist aus genannten Gründen nur sehr eingeschränkt möglich.

Automatisierte Auswertung der DJI-P4 Daten

Mit der DJI-P4 Kamera wurden multispektrale Daten erhoben und automatisch prozessiert. Mit dieser Kamera wurden sowohl Nadir- als auch Schrägaufnahmen mit einem Blickwinkel von ca. 45° gemacht. Aufgrund der geringeren Anzahl an spektralen Bändern sowie der spektralen Breite, können nicht die gleichen Indizes wie für die Nano-Daten berechnet werden. Nur wenige Indizes zeigen Zusammenhänge zu der Befallsstärke (Abb. 3.5.2.6). Grundsätzlich konnten aber bessere Zusammenhänge mit den Schrägaufnahmen beobachtet werden. Insbesondere der Downy mildew index 2, der NDRE2 sowie der NDVI weisen bei den Schägaufnahmen ein Bestimmtheitsmass von 0.73, 0.33 und 0.39 auf. Allerdings sind die die Zusammenhänge beim NDRE2 und NDVI positiv, was nicht zu erwarten ist. Somit scheint dieser Zusammenhang eher zufällig als biochemisch begründet zu sein.

44

Abbildung 3.5.2.6: Korrelation der von den Multispektralaufnahmen der P4-Kamera abgeleiteten Vegetationsindizes mit den aggregierten Befallsstärken: Nadir-abgeleitete (links) und von Schrägansicht-abgeleitete Vegetationsindizes (rechts)

Auswertung von drohnenbasierten Thermalaufnahmen zur Bewertung von Hitze- und <u>Trockenstress</u>

Die Abbildungen 3.5.2.7 und 3.5.2.8 zeigen die RBG und Thermalaufnahmen vom Versuchsweinberg in am IVV. Hierbei wird sichtbar, dass die Lücken in den Rebreihen von rechts nach links zu nehmen (in Richtung des Pfeils). Ebenso wird die Zwischenbegrünung geringer, da die Gräser weniger beschattet werden und schneller "verbrennen".

Abbildung 3.5.2.7: Übersicht über die Fläche anhand einer Echtfarbdarstellung.

Im Thermalbild lässt sich eine Temperaturzunahme zwischen den Reihen in die gleiche Richtung erkennen.

Abbildung 3.5.2.8: Thermalbilder der Versuchsfläche am IVV vom 19. Juli 2022 (heißester Tag)

Ein Zoom zeigt: Die geringere Kühlleistung durch die verbrannte und abgestorbene Zwischenbegrünung sorgt an heißen Tagen für Temperaturunterschiede von 20°C. Ebenfalls sind die Reben (grüne Kästchen) in lückenhaften Bereichen deutlich wärmer. Bis zu 10°C Temperaturunterschied ist hier zu verzeichnen.

Abbildung 3.5.2.9: Vergrößerung eines Ausschnitts, welcher große Temperaturunterschiede verdeutlicht.

Temperaturunterschiede im Minimalschnitt

Die Unterschiede der Temperaturen der Rebstöcke sind bei Minimalschnitt und den benachbarten Reihen vernachlässigbar (Abbildungen 3.5.2.10 und 3.5.2.11). Teilweise zeigen sogar die Reihen des Minimalschnitts etwas höhere Temperaturen, was sich durch den

höheren Wasserbedarf für die "Grundversorgung" der Biomasse und der nicht mehr leistbaren Transpiration erklären lässt. Entscheidender für die Temperaturen ist die Zwischenbegrünung sowie die Anzahl der Fehlstöcke, die sich wiederum auf die Beschattung/Sonnenexposition der Zwischenbegrünung auswirkt.

Abbildung 3.5.2.10: Vergleich der Temperatur von Minimalschnitt (mehr Blattmasse, im Bild erkennbar als breitere Rebreihe) und regulärem Schnitt. Thermalaufnahmen vom 19. Juli 2022.

Abbildung 3.5.2.11: Eine andere Skalierung zeigt nochmal deutlicher, dass der Minimalschnitt im Pflanzenbestand teilweise höhere Temperaturen aufweist als die regulär geschnittenen Reihen.

Für jedes Versuchsglied wurden Mittelwert, Median, Minimum und Maximum der Temperatur berechnet. Basierend auf den vier Wiederholungen wurden Boxplots für den Mittelwert (Abbildung 3.5.2.12) und Median (Abbildung 3.5.2.13) erstellt.

Abbildung 3.5.2.12: Boxplots der Temperaturmittelwerte der 8 Versuchsglieder des Sonnenbrandversuchs (Traubenzone, 02 August 2022). 1 = unbehandelte Kontrolle ohne Inokulation, 2 = unbehandelte Kontrolle mit Inokulation, 3 = integriert mit Inokulation, 4 = Kupfer mit Inokulation, 5 = Phosphorige Säure mit Inokulation, 6 = Kupfer + Phosphorige Säure mit Inokulation, 7 = Kupfer + Phosphorige Säure bis BBCH 69 mit Inokulation, 8 = Kupfer + Fytosave mit Inokulation.

Abbildung 3.5.2.13: Boxplots der Temperaturmedianwerte der 8 Versuchsglieder des Sonnenbrandversuchs (Traubenzone, 02 August 2022). 1 = unbehandelte Kontrolle ohne Inokulation, 2 = unbehandelte Kontrolle mit Inokulation, 3 = integriert mit Inokulation, 4 = Kupfer mit Inokulation, 5 = Phosphorige Säure mit Inokulation, 6 = Kupfer + Phosphorige Säure mit Inokulation, 7 = Kupfer + Phosphorige Säure bis BBCH 69 mit Inokulation, 8 = Kupfer + Fytosave mit Inokulation.

Sowohl für den Median als auch den Mittelwert zeigt sich eine ähnliche Verteilung der Temperatur in der Traubenzone der verschiedenen Versuchsglieder (vgl. Abb. 3.5.2.12 und 3.5.2.13). Bei den unentblätterten Varianten 1 und 2 zeigt sich, dass die Temperatur in der mit

Kaolin behandelten Variante 2 etwas geringer ausfällt als in der unbehandelten Kontrolle. Insgesamt weisen die beiden unentblätterten Varianten die geringste Temperatur auf. Auch bei VG 3 und 4 zeigt sich eine etwas niedrigere Temperatur (~1°C) in der Traubenzone in der mit Kaolin behandelten Variante 4. Dieser Effekt zeigt sich in den spät entblätterten Varianten 5 und 6 nicht, die große Streuung der Werte in Variante 6 ist auf eine ungleichmäßige Anzahl an Reben im Versuchsglied zurückzuführen. Auch bei VG 7 zeigt sich eine große Streuung der Daten sowie kaum Unterschied zu Variante 8, bei der das Mittel GrapeGuard mit Netzmittel ausgebracht wurde. Da hier ein anderes Mittel ausgebracht wurde, stehen die Varianten 7 und 8 für sich alleine.

3.6 Versuch AA Monitoring symptomatischer Esca-Stöcke

Die Bonitur auf Symptome des Esca-Komplexes erfolgte am 01.09.2022. Insgesamt wurden 7242 Rebstöcke erfasst. Von diesen zeigten 68,5% (4963) keine Symptome des Esca-Komplexes, 26,6% (1924) waren abgestorben oder nicht mehr existent und 4,9% (355) waren symptomatisch. Von diesen symptomatischen Stöcken zeigten 3% eine Apoplexie, 57% Blattsymptome und 47% Beerensymptome.

Die räumliche Verteilung ist aus Abb. 3.5.3.1 ersichtlich.

Abbildung 3.5.3.1: Räumliche Verteilung der Rebstöcke mit Blattsymptomen des Esca-Komplexes und Fehlstöcken (rot) in der Rebanlage "Berg" des IVV. Erfassung am 01.09.2022.

Die Ergebnisse der vergleichenden Analysen der Entwicklung der symptomatischen Stöcke in den Jahren 2017 bis 2022 sowie die Ergebnisse fernerkundlicher Untersuchungen zur Erfassung des Esca-Befalls werden im Rahmen des Projektes MonESCA kommuniziert.

3.7 Bestandsklima in den verschiedenen Erziehungssystemen

Zwischen den Weinstöcken entwickelt sich in Abhängigkeit von der Pflanzdichte, der Erziehungsart der Reben sowie eventuell durchgeführter Schnitt- und Entblätterungsmaßnahmen ein Bestandesklima, das vom übergeordneten Makroklima außerhalb des Bestandes mehr oder weniger stark abweicht. Im Rahmen des Arbeitspaketes 3 wurde getestet, inwieweit diese Abweichungen die Prognosen des Systems Vitimeteo beeinflussen. Dazu wurden Wetterdaten, die sowohl innerhalb von Pflanzenbeständen mit verschiedenen Schnitt- & Entblätterungssystemen als auch außerhalb der Pflanzenbestände (=aktueller Standard) gemessen wurden, für Prognoseläufe von Vitimeteo verwendet. Die Wetterdaten im Bestand wurden am IVV gemessen und an die Firma GeoSens für Modellläufe im Vitimeteo übermittelt.

← Abbildung 3.7.1: Anzahl der Tage pro Saison, Vitimeteo an denen von Peronospora Infektionen angegeben wurden. Die Vititmeteo Prognosen wurde mit Wetterdaten berechnet, die entweder im Pflanzenbestand, oder außerhalb des Pflanzenbestandes gemessen wurden. Die Messungen im Pflanzenbestand wurden in den Schnittsystemen Minimalschnitt im Spalier, Spaliererziehung mit Entblätterung der Traubenzone und Spaliererziehung ohne Entblätterung der Traubenzone durchgeführt.

Die wenigsten Tage mit *Peronospora* Infektionen (34 pro Saison) wurden von Vitimeteo bei Messung der Wetterdaten außerhalb der Pflanzenbestände berechnet. Dieser Messort ist der aktuelle Standard.

Wenn man die Blattnässe in einem Bestand mit Minimalschnitt im Spalier misst, erhöht sich die Anzahl der Tage mit prognostizierten *Peronospora* Infektionen von 34 auf 49 (Abb. 3.7.1). Bei Messung von Blattnässe, Temperatur und Luftfeuchte in einem Bestand mit Minimalschnitt im Spalier erhöht sich die Anzahl von Tagen mit vorhegesagten Infektionen auf 54 (Abb. 3.7.1). Für Spaliererziehung mit entblätterter Traubenzone und Messung der Blattnässe im Bestand berechnete Vitimeteo 55 Tage mit Infektionen pro Saison (Abb. 3.7.1).

Wenn man die Blattnässe, Temperatur und Luftfeuchte in einem Bestand mit Spaliererziehung und entblätterter Traubenzone misst, erhöht sich die Anzahl der Tage mit prognostizierten *Peronospora* Infektionen weiter auf 59 (Abb. 3.7.1).

Für Spaliererziehung ohne Entblätterung der Traubenzone und Messung der Blattnässe im Bestand berechnete Vitimeteo 61 Tage mit Infektionen pro Saison (Abb. 3.7.1). Die meisten Tage mit *Peronospora* Infektionen (69) gab Vitimeteo bei Messung von Blattnässe, Temperatur und Luftfeuchte in einem Bestand mit Spaliererziehung ohne Entblätterung der Traubenzone an (Abb. 3.7.1).

 Messung der Wetterdaten ausserhal des Bestandes, keine Berücksichtigung von Entblätterung und Schittsystem
 Messung der Blattnässe im Bestand, Spaliererziehung, ohne Entblätterung der Traubenzone
 Messung von Blattnässe, Temperatur und Luftfeuchte im Bestand, Spaliererziehung, ohne Entblätterung der Traubenzone
 Messung der Blattnässe im Bestand, Spaliererziehung, Entblätterung der Traubenzone
 Messung von Blattnässe, Temperatur und Luftfeuchte im Bestand, Spaliererziehung, Entblätterung der Traubenzone
 Messung der Blattnässe im Bestand, Minimalschnitt im Spalier
 Messung von Blattnässe, Temperatur und Luftfeuchte im Bestand, Minimalschnitt im Spalier

Abbildung 3.7.2: Von Vitimeteo berechneter Oidium Index im saisonalen Verlauf. Die Vititmeteo Prognosen wurde mit Wetterdaten berechnet, die entweder im Pflanzenbestand, oder außerhalb des Pflanzenbestandes gemessen wurden. Die Messungen im Pflanzenbestand wurden in den Schnittsystemen Minimalschnitt im Spalier, Spaliererziehung mit Entblätterung der Traubenzone und Spaliererziehung ohne Entblätterung der Traubenzone durchgeführt.

Der von Vitimeteo berechnete Oidium-Index wurde durch die im Arbeitspaket 3 getesteten Schnittsysteme, Entblätterungmassnahmen und Messorte nur minimalst beeinflusst. Lediglich die Varianten "Messung von Blattnässe, Temperatur und Luftfeuchte im Bestand, Spaliererziehung ohne Entblätterung der Traubenzone" und "Messung von Blattnässe, Temperatur und Luftfeuchte im Bestand, Minimalschnitt im Spalier" erreichten im Mai geringfügig höhere Werte als die anderen Varianten (Abb. 3.7.2).

54

Abbildung 3.7.3: Jahresmitteltemperaturen basierend auf den Messwerten der ASTA Station Remich; Zeitraum 2011 bis 2022. (2022 Daten nur bis 5.12.2022 berücksichtigt). Langjähriges Mittel (2011-20222: 11.0°C)

Abbildung 3.7.4: Jahressummen des Niederschlages basierend auf den der ASTA Station Remich; Messwerten Zeitraum 2011 bis 2022 (2022 Daten nur bis berücksichtigt). 5.12.2022 Langjährige Niederschlagssumme mittlere jährliche (707mm)

Die Abbildungen 3.7.3 und 3.7.4 verdeutlichen den extrem unterschiedlichen Witterungsverlauf der Jahre 2021 (kalt & nass) und 2022 (heiß und trocken). Dies führte dazu, dass die im ersten Versuch erstellten neuronalen Netze (trainiert mit den Daten 2021) bei der Simulation der Blattnässedaten für das 2022 schlechte Ergebnisse lieferten. Der Trainingsdatensatz enthielt nicht genügend Fälle für trocken und heiße Ereignisse. Erst die Erweiterung des Trainingsdatensatzes mit den Daten aus dem Jahre 2022 konnte dies beheben.

Simulation der Blattnässe im Bestandsklima mittels künstlicher neuronaler Netze

"Blattnässe (LW) bezieht sich auf das Vorhandensein von Wasser auf der Blattoberfläche bedingt durch Interzeption, Tau oder Guttation. Das Verhalten von Blattnässe wird seit Jahrzehnten umfassend untersucht, insbesondere in den Bereichen Pflanzenpathologie und landwirtschaftlicher Meteorologie (Mikro-Meteorologie), da für einige Pflanzenkrankheiten das Vorhandensein von Feuchtigkeit auf der Blattoberfläche für Infektionsereignisse erforderlich ist. Untersuchungen zur Blattnässe umfassen sowohl die Verwendung von Blattnässesensoren zur Bestimmung der Dauer der Blattnässe, die Platzierung von Sensoren in verschiedenen Pflanzenbeständen als auch die Verwendung von Modellen als Alternative zu Sensoren" (Rowlandson, 2011). Das Hauptziel des Versuchs ist es, ein statistisches Modell zur Vorhersage der Blattnässe im Bestand, basierend auf direkten Messungen an der ASTA-Station Remich zu entwickeln. Hierzu werden *in-situ*-Sensormessungen im Pflanzenbestand in den verschiedenen Varianten genutzt, um in Kombination mit den Messungen der ASTA Station einen Transferfunktion mittels neuronaler Netze zu erstellen.

3.7.1 Eingangsdaten

Zwei Hauptdatenquellen bilden die Grundlage für die Berechnungen:

- Messungen des Blattnässesensors (LWS) von LIST in den drei verschiedenen Varianten 2, 3 und 6.
- Meteorologische Variablen, einschließlich LW-Werten, gemessen an der ASTA Wetterstation Remich außerhalb der Pflanzenbestände.

Tabelle 3.7.1.1 zeigt die Messzeiträume und die Datensatzlängen (stündliche Auflösung).

Datenreihe	Start der Messung	Ende der Messung	Anzahl der Messwerte
LWS-LISTE 2020	2020-05-27 19:00:00	2020-11-05 23:00:00	3874
LWS-LISTE 2021	2021-05-28 23:00:00	2021-08-16 17:00:00	1915
LWS-LISTE 2022	2022-03-15 17:00:00	2022-0 9-15 15:00 :00	4413
LWS ASTA 2020	2020-05-27 19:00:00	2020-11-05 23:00:00	3874
LWS ASTA 2021	2021-05-28 23:00:00	2021-08-16 17:00:00	1915
LWS ASTA 2022	2022-03-15 17:00:00	2022-0 9-15 15:00 :00	4413

Tabelle 3.7.1.1: Messzeitrahmen und Aufzeichnungslänge in Zeitschritten.

Für einen ersten Vergleich wurde die Korrelation zwischen dem mittleren LW-Werten, gemessen in der Variante 2 durch die Sensoren 3 und 4 (installiert in der Laubwand), und den ASTA-Messungen (ASTA_LWS) von 2020 bis 2022 berechnet. Für die Variante 2 wurde der Mittelwert aus den Sensoren 3 und 4 gebildet. Diese beiden Sensoren waren auf unterschiedlichen Seiten der Laubwand installiert, lieferten hier aber äquivalente Ergebnisse, so dass eine separate Berücksichtigung keinen Sinn machte.

Der R²-Wert ist mit 0,007 für 2020, 0,335 für 2021 sehr niedrig für das Jahr 2022 mit 0,730 höher. Für 2022 konnten nur Werte des Sensors 3 berücksichtigt, da es am Sensor 4 zu Datenlücken und fehlerhaften Messungen kam. In analoger Weise wurde für die Variante 3 die Korrelation zwischen dem LW-Werten, gemessen von Sensor 3 in der Laubwand und der ASTA-Messung berechnet. Der R²-Werte fallen auch hier für 2020 mit 0,313, und 0,201 sehr niedrig aus und sind erneut im Jahr 2022 höher (0,617). Für die Variante 6 ergeben die Korrelationen zwischen dem mittleren LW-Werten gemessen in der Laubwand und den ASTA-

Messung folgende R^2 Werte: 0,447 für 2020, und 0,210 für 2021 und ein höherer Wert für 2022 (0,606).

Die sehr niedrigen R²-Werte, die in den Vergleichen der LW-Werten im Bestand und der ASTA-Messungen in den Jahren 2020 und 2021 erzielt wurden, und generell höhere Werte für das Jahr 2022 sind mit hoher Wahrscheinlichkeit auf die deutlich unterschiedliche Witterung in den Vegetationsperioden zurückzuführen. Im Jahr 2022 herrschte extreme Trockenheit, verbunden mit sehr niedrigen LW-Werten, im Gegensatz dazu war die Vegetationsperiode 2021 sehr nass. Generell erscheint es jedoch möglich, dass eine Korrekturfunktion für die ASTA-Messungen erstellt werden kann, um die Blattnässebedingungen im Bestand mit Hilfe der Messungen an der ASTA Station realistischer Abbildungen zu können. Daher wurden drei Artificial Neural Network-Modelle (ANN) - eines pro Variante - basierend auf den ASTA-Messungen entwickelt, um LW-Werte im Bestand simulieren zu können.

3.7.2 Modellimplementierung

Für jede der drei Varianten (2, 3 und 6), wurde ein individuelles ANN-Modell mit den stündlichen Messdaten der ASTA-Station trainiert. Hierzu wurden die in der Tabelle 3.7.1.1 spezifizierten Zeiträume genutzt; d.h. insgesamt 10202 Datensätze bei 1-stündiger zeitlicher Auflösung. In der Programmiersprache Python wurde ein sequenzielles Keras-Modell definiert, das für jede Schicht genau einen Eingabetensor und einen Ausgabetensor hat. Der Zieltensor für den Trainingsschritt war jeweils der gemessene LW-Wert an den LIST Stationen in den Varianten 2, 3 und 6. Es wurden hier nur diejenigen Sensoren genutzt, die in der Laubwand angebracht waren. Das Trainingssatz-Split-Verhältnis wurde auf 70 Prozent der Gesamtdatensätze festgelegt, d.h. 70% der Daten wurden für den Trainingsdatensatz und 30% der Daten zur Modellvalidierung genutzt. Die acht Zeitreihen der Eingangsdaten umfassen folgende Messwerte der ASTA Station: Blattnässe ('ASTA_LWS'), relative Feuchte ('ASTA_RH'), Lufttemperatur (2m 'ASTA_TAS-2m'), Bodentemperatur ('ASTA_TAS-Bod'), Windgeschwindigkeit ('ASTA_WV'), Globalstrahlung ('ASTA_Global'), Niederschlag ('ASTA_Precip'), und Sonnenscheindauer ('ASTA_SD'). Zusätzlich zu diesen Zeitreihen wurden künstliche Zeitreihen mit einer zeitlichen Verschiebung generiert, um das verzögerte Abtrocknungs- bzw. Benätzungsverhalten innerhalb des Bestandsklimas zu berücksichtigen. Es wurden Verzögerungen von 1 bis 48 Stunden im 1-Stunden-Intervall berechnet. Somit standen insgesamt 384 Zeitreihen als Eingaben für das Training des ANN zur Verfügung. Um die von LIST Stationen gemessenen LW-Werte mit den Modellierungsergebnisse (basierend auf dem Trainingsdatensätzen 2020 bis 2022) vergleichen zu können, werden in

den Abbildungen 3.7.5, 3.7.7 und 3.7.9 für die Varianten 2, 3 und 6 Scatterplots dargestellt. Die R²-Werte liegen zwischen 0.980 und 0.984 und sind in Tabelle 3.7.2.1 enthalten.

3.7.3 Modellvalidierung

Für jede der drei Varianten (2, 3 und 6) wurden individuelle ANN-Modelle mit den stündlichen ASTA-Messwerten validiert (Zeitraum 2020 bis 2022). Der Validierungsdatensatz (30 Prozent der Eingangsdaten) wurde nicht zur Modellerstellung genutzt und ist somit ein unabhängiger Datensatz.

Die Scatterplots in den Abbildungen 3.7.6, 3.7.8 und 3.7.10 zeigen die Verteilung der Validierungsdaten im Vergleich zu den Messwerten der ASTA Station für die Varianten 2, 3 und 6. Wie zu erwarten, liegen die R²-Werte unterhalb derjenigen der Trainingsdatensätze im Bereich zwischen 0,734 und 0,818 (Tabelle 3.7.2.1).

Tabelle 3.7.2.1: Zusammenfassung der R²-Werte, für die Training- und Validierungsdatensätze (350 Epochen).

Platz	R ² Training	R ² Validierung
Standort 2	0.980	0.734
Standort 3	0.984	0.749
Standort 6	0.980	0.818

Abbildung 3.7.5: Scatterplot des ANN-Models Trainingsdaten versus LW-Werte ASTA Station Remich, Variante 2; Zeitraum 2020 bis 2022.

Abbildung 3.7.6: Scatterplot der ANN-Vorhersage Validierungsdaten versus LW-Werte ASTA Station Remich, Variante 2; Zeitraum 2020 bis 2022.

Abbildung 3.7.7: Scatterplot des ANN-Models Trainingsdaten versus LW-Werte ASTA Station Remich, Variante 3; Zeitraum 2020 bis 2022.

Abbildung 3.7.8: Scatterplot der ANN-Vorhersage Validierungsdaten versus LW-Werte ASTA Station Remich, Variante 3; Zeitraum 2020 bis 2022.

Abbildung 3.7.9: Scatterplot des ANN-Models Trainingsdaten versus LW-Werte ASTA Station Remich, Variante 6; Zeitraum 2020 bis 2022.

Abbildung 3.7.10: Scatterplot der ANN-Vorhersage Validierungsdaten versus LW-Werte ASTA Station Remich, Variante 6; Zeitraum 2020 bis 2022.

Die Abbildung 3.7.11 zeigt ein Beispiel der simulierten Blattnässewerte mit Hilfe der Transferfunktion die als Eingangsdaten nur die Messdaten der ASTA Station Remich nutzt. Sowohl der zeitliche Verlauf der simulierten Werte (schwarze gestrichelte Linie), als auch die die Variabilität stimmt sehr gut mit den direkten Messungen im Bestand (rote Linie) überein.

Abbildung 3.7.11: Vergleich der simulierten Blattnässewerte mit den Messungen im Bestand in der Laubwand für den Zeitraum 16.03.2022 bis 15.04.2022.

Der Python Code zur Erzeugung der Transferfunktion ist im Annex enthalten. Diese wurde genutzt, um die Blattnässedaten der ASTA Station Remich für das Jahr 2022 zu korrigieren, um einen verbesserten Datensatz für den Antrieb der verschiedenen Schadmodelle zu liefern.

4 Fazit

Das seit 2013 durchgeführte **Scaphoideus titanus-Monitoring** lieferte bislang keinerlei Hinweise auf das Vorkommen des Vektors der Flavescence dorée im Luxemburger Weinbaugebiet.

Das **Monitoring von Drosophila suzukii** konzentrierte sich im Jahr 2022 auf früh reifende, anfällige Sorten, wie z.B. Pinot noir précoce sowie zwei PIWI Sorten (Cabaret noir und Pinotin). Die höchste Anzahl an Fliegen wurde Anfang September im Pinot noir gefangen, insgesamt waren die Fangzahlen jedoch sehr gering. Es wurde in 2022 keine Eiablage in den Beeren beobachtet. Im Bekämpfungsversuch wurde ebenfalls nur eine geringe Anzahl von Kirschessigfliegen in den Fallen registriert. Aufgrund der sehr geringen Anzahl an Fliegen konnte im Jahr 2022 kein repellenter Effekt von Surround abgesichert woran unter den gegebenen Umständen auch der Zusatz des Netzmittels BreakThru nichts ändern konnte. Im Vergleich dazu konnte in den vorherigen Jahren 2020 und 2021 eine hohe Flugaktivität von *D.suzukii* im September beobachtet werden. Eine Eiablage fand 2020 und 2021 vor allem in der Sorte Pinotin statt. Außerdem zeigte das Produkt Surround 2020 und 2021 einen signifikanten repellenten Effekt bezüglich der Flugaktivität, jedoch hatte es keinen Effekt auf die Eiablage. Die Schlüsselergebnisse der Kontrolle der Kirschessigfliege mit Naturstoffen wurden im *Journal of Applied Entomology* veröffentlicht.

Im Jahr 2022 wurde ein **Monitoring verschiedener PIWI Sorten** durchgeführt und mit der traditionellen Sorte Rivaner verglichen, um die Sorten besser charakterisieren zu können. Es konnten kaum *Peronospora* Blattsymptome festgestellt werden. Durch die heißen Sommertage trat vermehrt Sonnenbrand auf. Die höchste Schadensstärke von 2% wurde in der Sorte Solaris beobachtet. Es traten außerdem Blattgallen der Reblaus bei vier von 13 untersuchten PIWI Sorten auf. Diese wurden abgesammelt und beim zweiten Termin zeigte sich bei sieben Sorten ein Befall, der jedoch nur bei Souvignier gris vergleichsweise hoch ausfiel (30%).

Im Versuch zur fernerkundlichen Erkennung des Peronospora-Befalls wurde im Versuchsjahr 2022 aufgrund der starken Trockenheit nur ein geringer Befall von 1,6% erreicht. Wie in der gesamten Moselregion so war der Befallsdruck auch im Versuch sehr gering. Dennoch konnten mithilfe der hyperspektralen Nano-Daten und einem multivariaten statistischen Verfahren, der PLSR, Zusammenhänge für die Versuchstage T1 und T2 Ende Juni und Anfang Juli zwischen den Fernerkundungsdaten und dem Befallsgrad beobachtet werden. Dies ist besonders positiv anzumerken, da der sehr geringe Befall in den vorausgegangen Jahren meist sehr schwer zu schätzen war. Hilfreich waren die sehr guten Flugbedingungen in Kombination mit den verbesserten Installationen im Feld und optimierter Trennung zwischen Hintergrund und Rebe. Zusammenfassend kann festgehalten werden, dass Hyperspektraldaten auch geringen Befall mit empirische Modellen schätzen können. Einfache Multispektralkameras hingegen eignen sich mit den angewandten Methoden nur für die Schätzung von fortgeschrittenem (= hohem) Befall und das mit relativ geringerer Genauigkeit. Die Übertragung von Modellen auf andere Jahre setzten voraus, dass ein gewisses Vorwissen zum Befall zur Eingrenzung der Modelle vorhanden sein muss.

Als Ersatz für die verkürzte Flugsaison des *Peronospora*-Versuchs wurde die Gelegenheit der Hitzewellen genutzt, den **Hitze- und Trockenstress** mit Hilfe von Thermalaufnahmen sichtbar zu machen. Dabei zeigten sich deutliche Unterschiede innerhalb der Fläche mit bis zu 20°C, die insbesondere auf Bestandsdichte und Unterschiede in der Beschattung zurückzuführen waren. Darüber hinaus konnten erstmals erfolgreich Schrägaufnahmen mit der Thermalkamera aufgenommen und ausgewertet werden, die die Beobachtung und Analyse des Sonnenbrandversuchs erlauben.

Im Versuch **Bekämpfung des Falschen Mehltaus im integrierten Weinbau** wurden 2022 aufgrund der trockenen Witterung nur geringe Befallsstärken erreicht. Den höchsten Wirkungsgrad erreichte die Variante mit durchgehender Behandlung mit Phosphoriger Säure, gefolgt von der Variante mit durchgehender Kupfer Behandlung. Der Wirkungsgrad der integrierten Variante war 2022 am geringsten. Im Gegensatz dazu waren die Befallsstärken in den Jahren 2020 und 2021 deutlich höher; in diesen Jahren konnte die integrierte Variante sehr hohe Wirkungsgrade erreichen. Besonders in 2021, ein Jahr mit sehr hohem Befall an Blättern und Trauben, konnte die integrierte Variante einen Traubenbefall fast vollständig verhindern. Weiter lässt sich festhalten, dass auch die durchgehende Kupferbehandlung in allen Versuchsjahren einen guten Wirkungsgrad erzielen konnte. 2022 unterscheidet sich insofern von den vorherigen Jahren, dass die Befallsstärken deutlich geringer waren und sich die für Produkt- und Methodentests gewünschte Variabilität trotz künstlicher Infektion im Weinberg nicht einstellte. Die Erfassung der **Esca**-symptomatischen Rebstöcke im Weinberg "Berg" des IVV zeigte einen Anstieg über alle Sorten hinweg von durchschnittlich 4,9%. Zwischen den Erfassungen 2017 und 2022 ist der Anteil abgestorbener Reben von 14,0 auf 26,6% angestiegen. Es wurden starke Rebsortenunterschiede deutlich. Details der vergleichenden Analysen der symptomatischen Stöcke in den Jahren 2017 bis 2022 werden im Rahmen des Projektes MonESCA kommuniziert. Im Jahr 2023 wird der Weinberg im Rahmen des MonESCA Projektes weiterhin untersucht, um eine weitere Ausweitung des Anteils symptomatischer Reben sowie spontane Genesungen zu erfassen und mögliche Befalls- und Ausbreitungsmuster besser zu erkennen.

Die Erfassung des Bestandsklimas mittels mikrometeorologischer Messungen wurde im Jahr 2022 fortgesetzt. Im Gegensatz zu dem nassen Jahr 2021 war das Jahr 2022 durch Trockenheit und andauernde Hitzewellen im Sommer geprägt. Der Ansatz, die zeitliche Auflösung von Tagesmittelwerten der Blattnässe auf Stundenmittel zu erhöhen, hat sich als erfolgreich herausgestellt. Es konnten mittels neuronaler Netze Transferfunktionen für die drei Versuchsvarianten erstellt und validiert werden. Diese ermöglicht eine realistischere Darstellung des Eingangsparameters Blattnässe in verschiedenen Prognosemodellen für z.B. Pilzinfektionen. So hatte die Entblätterung der Traubenzone einen stärkeren Effekt auf die Anzahl der vom Prognosesystem Vitimeteo vorhergesagten *Peronospora* Infektionen als der Unterschied zwischen Spalier- und Minimalschnitt. Im Gegensatz dazu war der Effekt von Entblätterungs- und Schnittmaßnahmen auf die von Vitimeteo vorhergesagten *Oidium* Infektionen vernachlässigbar gering.

5 Danksagung

Die Autoren bedanken sich beim Ministerium für Landwirtschaft, Weinbau und ländliche Entwicklung / Institut Viti-Vinicole für die finanzielle Unterstützung, die Bereitstellung der Versuchsflächen sowie die Mithilfe bei der Durchführung der Untersuchungen im Weinberg, im Labor und im Keller. Weiterhin gilt ein besonderer Dank Sophie Römer, Mareike Schultz, Christopher Simon, Serge Fischer, Serge Garidel, Paul Zahlen, Jeff Lafleur, Joelle Koch, Heidi Litjens, Doriane Dam und Marine Pallez-Barthel für die Mitarbeit bei der Durchführung und Auswertung der Versuche. Michael Eickermann sei für die Unterstützung der entomologischen Bestimmungen im Rahmen des *S. titanus* Monitorings sowie für die Beratung bei der Methoden-Entwicklung für das Kirschessigfliegen-Monitoring und die -Bekämpfungsversuche gedankt. Weiterhin danken wir allen Winzern, die Weinberge für die Monitoring-Programme zur Verfügung gestellt haben.

6 Literaturverzeichnis

- BELLAMY, D. E., SISTERSON, M. S. & WALSE, S. S. 2013. Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, *Drosophila suzukii*. *PLoS ONE*, 8, e61227.
- GAMON, J. A., PEÑUELAS, J. & FIELD, C. B. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. *Remote Sensing of Environment* 41: 35-44.
- GITELSSON, A., MERZYLAK, M. N., 1994. Spectral reflectance changes associated with autumn senescence of *Aesculus hippocastanum* L. and *Acer platanoides* L. leaves: Spectral features and relation to chlorophyll estimation. *Journal of Plant Physiology* 143: 286–92.
- GITELSON, A. A., GRITZ, Y. & MERZLYAK, M. N. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. *Journal of Plant Physiology* 160: 271-282.
- HERRMANN, I., PIMSTEIN, A., KARNIELI, A., COHEN, Y., ALCHANATIS, V. & BONFIL, D. J. 2011. LAI assessment of wheat and potato crops by VENµS and Sentinel-2 bands. *Remote Sensing* of Environment 115: 2141-2151.
- IPACH, R., HUBER, B., HOFMANN, H. & BAUS, O. 2005. Richtlinie zur Prüfung von Wachstumsregulatoren zur Auflockerung der Traubenstruktur und zur Vermeidung von Fäulnis an Trauben. *Outline for an EPPO-guideline*.
- JACKSON, R.D., IDSO, S.B., REGINATO, R.J. & PINTER, P.J. 1981. Canopy temperature as a crop water stress indicator. *Water Resources Research* 17: 1133–1138.
- LORENZ, D. H., EICHHORN, K. W., BLEIHOLDER, H., KLOSE, R., MEIER, U. & WEBER, E. 1995. Phenological growth stages of the grapevine, *Vitis vinifera* L. ssp. *vinifera*. Codes and descriptions according to the extended BBCH scale. *Australian Journal of Grape and Wine Research* 1: 100-103.
- Luxembourg Institute of Science and Technology (LIST). Hydroklimatologisches Beobachtungsnetz (HOST). Datentabelle(n) abgerufen, z. B. ASTA 2020 bis 2022 stündlich 'ASTA_LWS', 'ASTA_RH', 'ASTA_TAS-2m', 'ASTA_TAS-Bod', 'ASTA_WV', 'ASTA_Global', 'ASTA_Precip', 'ASTA_SD'. Erhältlich bei Zugriffsdatum: 22. November 2022.
- OERKE, E.-C., HERZOG, K. & TÖPFER, R. 2016. Hyperspectral phenotyping of the reaction of grapevine genotypes to *Plasmopara viticola*. *Journal of Experimental Botany* 67: 5529–554.
- RETZLAFF, R., MOLITOR, D., BEHR, M., BOSSUNG, C., ROCK, G., HOFFMANN, L., EVERS, D. & UDELHOVEN, T. 2015. UAS-based multi-angular remote sensing of the effects of soil management strategies on grapevine. *Journal International des Sciences de la Vigne et du Vin* 49: 85-102.
- ROUSE, J. W., HASS, R. H., SCHELL, J. A. & DEERING, D. W. 1973. Monitoring vegetation systems in the great plains with ERTS. *Third Earth Resources Technology Satellite (ERTS) Symposium* 1: 309-317.
- ROWLANDSON, T.L., 2011. Blattnässe: Auswirkungen auf Landwirtschaft und Fernerkundung. Diplomarbeiten und Dissertationen. https://lib.dr.iastate.edu/etd/12054
- UDELHOVEN, T., DELFOSSE, P., BOSSUNG, C., RONELLENFITSCH, F., MAYER, F., SCHLERF, M., MACHWITZ, M. & HOFFMANN, L. 2013. Retrieving the bioenergy potential from maize crops using hyperspectral remote sensing. *Remote Sensing* 5: 254–73.
- VLACH, J. 2013. Identifying *Drosophila suzukii*. https://www.oregon.gov/oda/shared/documents/ publications/ippm/spottedwingdrosophilaidkey.pdf
- WOLD, S., SJÖSTRÖM, M.& ERIKSSON, L. 2001. PLS-Regression: A basic tool of chemometrics. *Chemometrics and Intelligent Laboratory Systems* 58: 109-130.
- YU, K., LENZ-WIEDEMANN, V., CHEN, X. & BARETH, G. 2014. Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects. ISPRS Journal of Photogrammetry and Remote Sensing 97: 58-77.

7 Anhang

7.1 Phänologische Entwicklung 2022

Tab A1:Daten des Erreichens der phänologischen Entwicklungsstadien gemäß BBCH-Code
(Lorenz et al., 1995) in den Versuchsflächen im Jahr 2022.

BBCH	Riesling Remich Klon 3	Rivaner Remich Klon 22	Elbling Zeile 77	Gewürz- traminer Klon 312	Pinot blanc Klon 54	Auxerrois Klon 7	S. blanc Remich ^{Klon 376}	Pinotgris Remich _{Klon7}	Chardonna y Remich ^{Klon Colmar 96}	Merlot Remich	Pinot noir Remich Klon Freiburg L13
01	07-Apr	30-Mar	26-Mar	29-Mar	29-Mar	29-Mar	04-Apr	29-Mar	30-Mar	31-Mar	29-Mar
03	13-Apr	06-Apr	29-Mar	07-Apr	07-Apr	07-Apr	06-Apr	07-Apr	04-Apr	10-Apr	04-Apr
05	19-Apr	17-Apr	14-Apr	16-Apr	19-Apr	19-Apr	19-Apr	17-Apr	16-Apr	19-Apr	16-Apr
07	22-Apr	21-Apr	17-Apr	20-Apr	21-Apr	24-Apr	24-Apr	21-Apr	19-Apr	24-Apr	21-Apr
09	24-Apr	25-Apr	21-Apr	23-Apr	25-Apr	28-Apr	28-Apr	24-Apr	24-Apr	28-Apr	25-Apr
11	04-May	02-May	28-Apr	30-Apr	01-May	02-May	02-May	30-Apr	01-May	01-May	01-May
12	07-May	04-May	30-Apr	01-May	04-May	05-May	05-May	02-May	04-May	04-May	04-May
13	09-May	06-May	01-May	05-May	08-May	08-May	08-May	05-May	07-May	08-May	07-May
14	11-May	08-May	06-May	08-May	10-May	10-May	10-May	08-May	08-May	10-May	09-May
15	13-May	10-May	08-May	10-May	12-May	12-May	12-May	10-May	09-May	12-May	10-May
16	16-May	13-May	10-May	12-May	15-May	17-May	17-May	12-May	10-May	16-May	12-May
17	18-May	17-May	13-May	15-May	18-May	18-May	20-May	18-May	16-May	18-May	16-May
18	22-May	20-May	16-May	17-May	19-May	21-May	22-May	21-May	19-May	24-May	18-May
19	26-May	22-May	19-May	21-May	23-May	25-May	27-May	26-May	23-May	26-May	29-May
53	10-May	09-May	04-May	05-May	11-May	13-May	13-May	11-May	05-May	10-May	09-May
55	21-May	19-May	13-May	12-May	19-May	18-May	23-May	13-May	18-May	23-May	12-May
57	01-Jun	30-May	23-May	30-May	01-Jun	01-Jun	05-Jun	28-May	25-May	03-Jun	29-May
61	06-Jun	04-Jun	05-Jun	05-Jun	04-Jun	05-Jun	09-Jun	04-Jun	01-Jun	08-Jun	03-Jun
63	09-Jun	06-Jun	08-Jun	08-Jun	06-Jun	08-Jun	10-Jun	05-Jun	03-Jun	10-Jun	05-Jun
65	11-Jun	08-Jun	10-Jun	09-Jun	08-Jun	10-Jun	11-Jun	08-Jun	05-Jun	11-Jun	08-Jun
68	12-Jun	10-Jun	11-Jun	11-Jun	10-Jun	12-Jun	12-Jun	10-Jun	08-Jun	12-Jun	09-Jun
69	15-Jun	12-Jun	12-Jun	13-Jun	12-Jun	13-Jun	15-Jun	11-Jun	11-Jun	15-Jun	10-Jun
71	16-Jun	15-Jun	13-Jun	16-Jun	16-Jun	16-Jun	19-Jun	14-Jun	13-Jun	17-Jun	12-Jun
73	20-Jun	18-Jun	19-Jun	19-Jun	19-Jun	19-Jun	25-Jun	16-Jun	15-Jun	19-Jun	16-Jun
75	02-Jul	25-Jun	25-Jun	01-Jul	28-Jun	28-Jun	02-Jul	27-Jun	29-Jun	25-Jun	27-Jun
77	09-Jul	18-Jul	11-Jul	09-Jul	07-Jul	11-Jul	13-Jul	29-Jun	04-Jul	17-Jul	14-Jul
79	13-Jul	27-Jul	18-Jul	14-Jul	12-Jul	17-Jul	28-Jul	10-Jul	14-Jul	11-Aug	31-Jul
81	16-Aug	08-Aug	08-Aug	30-Jul	09-Aug	03-Aug	02-Aug	07-Aug	10-Aug	12-Aug	08-Aug
83	22-Aug	10-Aug	12-Aug	03-Aug	11-Aug	06-Aug	06-Aug	11-Aug	16-Aug	14-Aug	12-Aug
85	25-Aug	12-Aug	18-Aug	08-Aug	18-Aug	08-Aug	11-Aug	18-Aug	18-Aug	18-Aug	15-Aug
89	23-Aug	14-Aug	31-Aug	01-Aug	15-Aug	13-Aug	03-Aug	13-Aug	15-Aug	15-Aug	10-Aug

BBCH	Cabernet blanc	Cabertin	Calardis blanc	Johannite r	Villaris	Muscaris	Pinotin	Sauvignac	Solaris	Souvignie r gris	Divico	Helios	Bronner	Cabaret noir
01	31-Mar	31-Mar	29-Mar	26-Mar	29-Mar	23-Mar	04-Apr	26-Mar	29-Mar	29-Mar	26-Mar	04-Apr	30-Mar	31-Mar
03	07-Apr	11-Apr	02-Apr	29-Mar	04-Apr	25-Mar	11-Apr	29-Mar	31-Mar	01-Apr	29-Mar	07-Apr	02-Apr	07-Apr
05	17-Apr	14-Apr	13-Apr	11-Apr	14-Apr	28-Mar	19-Apr	10-Apr	11-Apr	13-Apr	11-Apr	23-Apr	16-Apr	14-Apr
07	23-Apr	19-Apr	19-Apr	16-Apr	23-Apr	14-Apr	23-Apr	15-Apr	18-Apr	16-Apr	17-Apr	27-Apr	19-Apr	17-Apr
09	27-Apr	23-Apr	24-Apr	21-Apr	28-Apr	18-Apr	28-Apr	18-Apr	21-Apr	19-Apr	24-Apr	01-May	25-Apr	24-Apr
11	01-May	28-Apr	01-May	28-Apr	05-May	27-Apr	02-May	23-Apr	01-May	01-May	30-Apr	05-May	30-Apr	30-Apr
12	04-May	02-May	04-May	30-Apr	07-May	01-May	05-May	28-Apr	04-May	05-May	01-May	07-May	02-May	05-May
13	07-May	04-May	07-May	05-May	08-May	04-May	07-May	01-May	06-May	08-May	04-May	09-May	05-May	08-May
14	09-May	07-May	10-May	07-May	09-May	06-May	08-May	04-May	08-May	10-May	06-May	12-May	08-May	09-May
15	11-May	09-May	13-May	09-May	10-May	08-May	10-May	06-May	10-May	12-May	08-May	17-May	10-May	10-May
16	17-May	11-May	17-May	12-May	13-May	10-May	16-May	09-May	12-May	17-May	10-May	18-May	12-May	12-May
17	18-May	16-May	19-May	16-May	17-May	12-May	19-May	12-May	17-May	18-May	13-May	21-May	18-May	16-May
18	21-May	23-May	24-May	18-May	18-May	16-May	26-May	15-May	18-May	21-May	17-May	26-May	23-May	18-May
19	25-May	26-May	26-May	25-May	25-May	18-May	30-May	19-May	21-May	26-May	21-May	31-May	23-May	23-May
53	10-May	09-May	05-May	09-May	10-May	04-May	10-May	04-May	04-May	10-May	05-May	13-May	05-May	10-May
55	19-May	18-May	13-May	18-May	18-May	10-May	23-May	10-May	13-May	13-May	10-May	23-May	15-May	13-May
57	01-Jun	30-May	22-May	31-May	27-May	22-May	03-Jun	23-May	21-May	25-May	23-May	31-May	23-May	26-May
61	04-Jun	04-Jun	30-May	03-Jun	04-Jun	29-May	06-Jun	31-May	28-May	26-May	27-May	07-Jun	30-May	31-May
63	06-Jun	05-Jun	02-Jun	05-Jun	05-Jun	01-Jun	08-Jun	01-Jun	30-May	03-Jun	28-May	09-Jun	02-Jun	03-Jun
65	09-Jun	06-Jun	04-Jun	07-Jun	07-Jun	04-Jun	09-Jun	03-Jun	02-J un	04-Jun	01-Jun	11-Jun	04-Jun	06-Jun
68	12-Jun	09-Jun	06-Jun	10-Jun	08-Jun	06-Jun	10-Jun	06-Jun	05-J un	06-Jun	05-Jun	13-Jun	06-Jun	08-Jun
69	15-Jun	12-Jun	08-Jun	11-Jun	10-Jun	07-Jun	12-Jun	08-Jun	07-J un	09-Jun	06-Jun	15-Jun	08-Jun	10-Jun
71	20-Jun	16-Jun	12-Jun	12-Jun	12-Jun	09-Jun	16-Jun	12-Jun	11-Jun	12-Jun	09-Jun	16-Jun	11-Jun	12-Jun
73	22-Jun	21-Jun	15-Jun	15-Jun	15-Jun	15-Jun	19-Jun	14-Jun	15-J un	15-Jun	14-Jun	18-Jun	14-Jun	15-Jun
75	29-Jun	29-Jun	24-Jun	21-Jun	22-Jun	22-Jun	28-Jun	21-Jun	21-J un	22-Jun	25-Jun	25-Jun	21-Jun	25-Jun
77	27-Jul	17-Jul	14-Jul	29-Jun	18-Jul	11-Jul	15-Jul	12-Jul	07-Jul	11-Jul	15-Jul	18-Jul	10-Jul	13-Jul
79	09-Aug	02-Aug	30-J ul	14-Jul	04-Aug	28-Jul	23-Jul	31-Jul	15-Jul	03-Aug	24-Jul	28-Jul	25-Jul	27-Jul
81	10-Aug	03-Aug	31-J ul	02-Aug	05-Aug	31-Jul	24-Jul	05-Aug	16-Jul	04-Aug	25-Jul	29-Jul	01-Aug	28-Jul
83	14-Aug	04-Aug	02-Aug	04-Aug	08-Aug	04-Aug	01-Aug	07-Aug	18-Jul	05-Aug	31-Jul	31-Jul	06-Aug	01-Aug
85	16-Aug	07-Aug	04-Aug	07-Aug	12-Aug	08-Aug	06-Aug	11-Aug	25-Jul	07-Aug	03-Aug	04-Aug	08-Aug	04-Aug
89	08-Aug			06-Aug	06-Aug	14-Aug	14-Aug	01-Aug	29-Jul	08-Aug		15-Aug	06-Aug	02-Aug

Tab A2: Daten des Erreichens der phänologischen Entwicklungsstadien gemäß BBCH-Code (Lorenz et al., 1995) in den PIWI Sorten im Jahr 2022

7.2 Tageswitterungsbedingungen in der Vegetationsperiode 2022

Tag

Monat

Tab. A2:Tagesmitteltemperaturen (tm) sowie Tagesniederschläge (N) im Zeitraum 01. April bis 30.September 2022 an der Wetterstation Remich (Quelle: agrimeteo.lu).

	Ap	April Mai		Ju	Juni		uli	Aug	gust	September		
	t _m (°C)	N (mm)	t _m (°C)	N (mm)	t _m (°C)	N (mm)	t _m (°C)	N (mm)	t _m (°C)	N (mm)	t _m (°C)	N (mm)
1	1,7	1,0	10,5	0,0	14,7	0,0	16,7	0,1	20,4	0,0	18,7	0,1
2	1,1	0,1	13,6	0,0	15,8	0,0	19,4	0,0	22,5	0,0	20,4	0,0
3	1,6	0,0	15,1	0,0	16,6	1,2	20,8	0,0	25,5	0,0	19,5	0,9
4	3,0	0,1	14,7	0,0	20,2	0,5	19,4	0,0	27,3	1,3	19,9	0,1
5	7,2	0,6	13,8	0,0	18,1	9,3	20,0	0,0	21,1	10,6	21,5	0,0
6	9,4	0,4	14,6	0,0	17,6	0,3	17,3	0,0	18,2	0,0	21,9	14,1
7	9,90	10,0	14,8	0,0	16,4	5,3	16,9	0,0	20,3	0,0	19,0	0,6
8	3,6	27,2	15,7	0,0	15,1	5,5	17,7	0,0	22,0	0,0	17,0	7,1
9	3,8	0,9	17,0	0,0	15,1	0,5	20,0	0,0	23,8	0,0	16,2	3,8
10	4,8	0,1	18,0	0,0	16,7	0,1	17,8	0,0	24,6	0,0	15,4	7,0
11	9,9	0,0	20,5	0,0	20,4	0,0	20,8	0,0	24,5	0,0	16,5	0,3
12	14,9	0,0	17,4	0,0	20,2	0,0	21,9	0,0	24,4	0,0	17,0	0,3
13	15,0	0,0	14,9	0,0	17,1	0,0	24,9	0,0	24,1	0,0	18,8	0,0
14	15,1	0,0	15,6	0,0	18,3	0,0	23,3	0,0	24,0	0,1	19,0	28,0
15	13,6	0,0	20,1	0,0	21,6	0,0	19,5	0,0	20,8	1,8	16,6	0,2
16	11,4	0,0	18,2	5,2	22,3	0,0	19,5	0,0	21,7	0,0	12,9	1,3
17	11,0	0,0	18,8	0,1	22,1	0,0	21,8	0,0	22,2	0,0	10,5	0,2
18	11,4	0,0	21,7	0,0	26,1	0,0	25,4	0,0	21,5	0,0	11,8	0,1
19	12,1	0,0	23,0	0,0	26,9	0,0	28,5	0,0	21,5	0,0	10,7	0,3
20	11,7	0,0	20,1	1,5	17,2	3,1	24,2	6,3	20,4	0,1	10,3	0,3
21	12,0	0,0	25,5	0,0	19,1	0,0	20,9	0,3	20,1	0,0	10,9	0,1
22	12,7	0,0	16,5	0,3	21,4	0,8	21,9	0,0	22,3	0,0	11,3	0,0
23	12,7	0,0	17,0	7,7	23,7	0,9	22,4	1,1	22,3	0,0	11,4	0,1
24	11,9	5,4	13,8	10,7	18,9	10,0	24,0	0,0	24,8	0,0	12,1	0,0
25	9,9	3,4	14,6	0,4	20,2	0,8	23,4	0,1	25,1	0,0	12,4	0,1
26	8,5	2,5	16,5	0,0	17,1	2,1	19,5	0,0	20,9	0,5	9,2	9,1
27	10,5	0,1	15,2	0,0	17,2	0,3	19,7	0,0	19,4	0,0	9,7	1,6
28	13,9	0,0	12,5	0,0	19,9	0,0	20,8	0,0	20,4	0,0	9,8	1,2
29	13,4	2,1	11,0	0,1	22,2	0,0	21,9	0,0	21,5	0,0	7,6	3,3
30	10,4	0,4	11,6	0,0	19,4	0,5	21,4	0,0	22,6	0,0	8,1	0,4
31			14,2	0,0			22,9	0,0	19,2	10,6		

7.3 Veröffentlichungen

Dam D, Molitor D, Schultz M, Beyer M (2022): *Drosophila suzukii* population dynamics and control efficiency of mineral dusts with a focus on grape protection. *Journal of Applied Entomology* 146:369-407. <u>https://doi.org/10.1111/jen.12988</u>.

7.4 Teilnahme an Veranstaltungen

Die Weinbergsbegehung fand am 05/09/2022 ab 15:00h auf den Flächen des Weinbauinstitutes in Remich statt.

Die Mitarbeiter des LIST stellten aktuelle Neuigkeiten aus ausgewählten Feldversuchen sowie die Möglichkeiten des Einsatzes von Drohnen und einer Thermalkamera im Weinbau vor.

7.5 Python Code zur Erzeugung der Transferfunktion (WP 3)

"Python code: Artificial Neural Network (ANN) model definition"

J.A. Torres-Matallana, Jürgen Junk

reference: https://keras.io/guides/sequential_model/

def ann_model0(x_train): import
 random
 from tensorflow.keras.models import Sequential from
 tensorflow.keras.layers import Dense
 random.seed(42)
model = Sequential([
 Dense(384, activation='relu', input_shape=(x_train.shape[1],)), # 384
 Dense(128, activation='relu'), Dense(64,
 activation='relu'), # 64 Dense(1),

]) return model

"Python code: Artificial Neural Network (ANN) model tunning, training and testing

J.A. Torres-Matallana, Jürgen Junk

 $split_pcent = 0.67$
```
split_train = int(round(df.shape[0]*split_pcent, 0))
df.shape[0]
X_train_ordered = df.iloc[:split_train, :] # if non PCA is used
X_{test_ordered} = df[split_train + 1:]
y_train_ordered = y[:split_train]
y_test_ordered = y[split_train + 1:]
# aux. variables for plotting
X_train_ordered_plt = df_date.iloc[:split_train, :]
X_test_ordered_plt = df_date[split_train + 1:]
y_train_ordered_plt = y_date[:split_train]
y_test_ordered_plt = y_date[split_train + 1:]
# Specify the model and its architecture
import keras
import tensorflow as tf
tf.config.list_physical_devices("GPU")
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
import random
random.seed(42)
simple_model = Sequential([
  Dense(64, activation='relu', input_shape=(X_train.shape[1],)),
   Dense(64, activation='relu'),
  Dense(1),
D
# Obtain a summary of the model architecture
simple_model.summary()
# Compile the model
# install: keras-applications; keras-base
import keras.optimizers
simple_model.compile(
   optimizer=keras.optimizers.adam_v2.Adam(learning_rate=0.01),
  loss='mean absolute error',
  metrics=['mean absolute error'],
)
# Fit the model
smod_history = simple_model.fit(X_train, y_train,
           validation_split=0.2,
           epochs=10,
```

```
)
```

```
# # Plot the training history
# plt.plot(smod_history.history['loss'])
```

batch_size=50,
shuffle = True

```
# plt.plot(smod_history.history[ 'val_loss '])
# plt.title( 'model loss ')
# plt.ylabel( 'accuracy ')
# plt.xlabel( 'epoch ')
# plt.legend(['train', 'val'], loc='upper left ') #
plt.show()
```

```
# learning rate decay/scheduling
```

from tensorflow.keras.optimizers.schedules import ExponentialDecay

lr schedule = ExponentialDecay(initial_learning_rate=0.01, decay steps=10000, decay_rate=0.5) model = ann_model(X_train) # ann_model(X_train) model.summary() model.compile(optimizer=keras.optimizers.adam_v2.Adam(learning_rate=lr_schedule), # better0 loss='mean_squared_error', # ANN_1 metrics=['mean_squared_error'], # ANN_1) early_stop = keras.callbacks.EarlyStopping(monitor = 'mean_squared_error', patience = 200restore_best_weights = True) history = model.fit(X_train, y_train, # <===== FINAL validation data=(X test, y test), epochs=par epochs, batch_size=par_batch_size, shuffle = True#, #callbacks=[early_stop] # ANN_1) # model = keras.models.load model('model ann ') f = plt.figure() f.set_figwidth(11.69) f.set_figheight(8.27) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('accuracy') plt.xlabel('epoch')

```
plt.legend(['training', 'validation'], loc='upper right')
# plt.show()
```

```
ax = plt.gca() ax.set_ylim([0,
500])
plt.savefig(folder_output + '/' + name + '_training_history.pdf')
plt.close()
# prediction on training set
train1 = model.predict(X_train)
# smooth
from scipy.signal import savgol_filter import
numpy as np
train1 = np.array(train1)
train1_filtered = np.transpose(savgol_filter(np.transpose(train1), 5, 3))
r2_score_train1 = r2_score(train1, y_train) r2_score_train1_filtered =
r2_score(train1_filtered, y_train) print('preds1_training = ' +
str(r2_score_train1))
print('preds1 training filtered = ' + str(r2_score_train1_filtered))
# prediction on test set
# preds1 = model.predict(X_test_ordered)
preds1 = model.predict(X_test)
# smooth
preds1 = np.array(preds1) preds1[preds1 >
100] = 100
preds1_filtered = np.transpose(savgol_filter(np.transpose(preds1), 5, 3))
preds1_filtered[preds1_filtered > 100] = 100
r2_score_preds = r2_score(preds1, y_test) r2_score_preds_filtered =
r2_score(preds1_filtered, y_test)
print('preds1 test = ' + str(r2_score_preds))
print('preds1 test filtered = ' + str(r2_score_preds_filtered))
f = plt.figure()
f.set_figwidth(11.69*40)
f.set_figheight(8.27)
plt.plot(train1, linewidth=0.5, label='Predictions (training)')
plt.plot(y_train.values, linewidth=1, label='Observations',
color='red') plt.legend(loc='upper left')
plt.savefig(folder_output + '/' + name + '_training.pdf', bbox_inches='tight',
             pad_inches=0)
plt.close()
import matplotlib.dates as mdates
x = pd.DataFrame(X_train_plt.loc[:, "Date"]) x.sort_values(by='Date',
inplace=True)
x.reset_index(inplace=True, drop=True) # reset index to start in 0
f = plt.figure()
```

f.set_figwidth(11.69*40)
f.set_figheight(8.27)

save model

model.save(folder_output + '/' + name + '_training_model_ann2')
return [model, r2_score_simple,
 r2_score_preds, r2_score_preds_filtered, x,
 preds1_filtered,
 y,
 X_test, X_test_plt, y_test,
 y_test_plt, X_train,
 X_train_plt, y_train,
 y_train_plt,
 r2_score_train1, r2_score_train1_filtered]