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Abstract

Providing localized predictions of soil properties is needed to assist soil surveyors and land managers,
and inform the political debate with quanti�ed estimates of the status and change of the soil resource.
Maps can be produced with data originating either from purpose-built soil monitoring networks (SMN)
or from previous soil measurements exercises such as soil testing for farmers by commercial/institutional
soil laboratories. Although SMN's are likely to provide better and less biased estimates of soil attributes
because of their optimal sampling strategy, SMN's are costly to establish, maintain and re-visit. Data
gathered from other sources, on the other hand, are often more numerous which might favor greater
accuracy in a geostatistical context. Another advantage is that these data are often acquired continuously
so that derived-maps can be rapidly and easily improved or updated with upcoming data. In this study,
we produce a map of the topsoil Organic Carbon (OC) content of croplands, grasslands, vineyards and
forest land of the Grand-Duchy of Luxembourg using more than 2,000 samples analyzed for OC (by
dry combustion) in 2012-2014 by the national laboratory of Ministry of Agriculture, Viticulture and
Consumer Protection in Luxembourg. We also provide based on this dataset simple OC statistics for
combinations of land cover and soil associations, to set benchmarks OC levels to which future analyses
can be compared. To model OC content, this study relies on a set of spatial covariates with a resolution
of 90 m, including elevation and its derivatives, land cover, soil texture, climate and livestock intensity.
Di�erent spatial prediction models were developed separately for each of the four land cover classes using
either Generalized Additive Models (GAM). Carbon content in cropland and forest soils show overall a
clear south to north increase in OC in Luxembourg due to a climatic gradient, the North being wetter
and colder than the south. In grasslands, OC distribution is highly related to soil types, with more OC
in clay-rich soils. Carbon content in vineyards can vary greatly in �elds close to each others and show
very little spatial structure. For cropland, soils, the model is characterized by a R2 = 0.66 and RMSE
= 5.5 g C kg-1 as computed on a validation set. Models developed for the other land covers were less
successful (R2 < 0.40). This could be explained either by the relatively low number of sampling points
(grasslands) or with the fact that a large part of OC variation occurs over short distances or without any
important relationship with the covariates (forest, vineyards). A �nal, map combining maps of the four
land covers and covering almost 90 % of the territory provides detailed information on the current status
of OC content in soils of Luxembourg.
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Chapter 1

Introduction

Since the Industrial Revolution, human actions have become the main working force behind global en-
vironmental changes, pushing the Earth System outside the stable environmental conditions prevailing
during the Holocene [1]. The same applies to the soil resource, that human activities are rapidly altering,
in�uencing not only the global carbon budget [2, 3] but also triggering soil degradation [4] and loss of soil
quality over large extent [5], thereby threatening the soil capacity to provide future ecosystem and social
services or support biomass production. The quantity and quality of Soil Organic Carbon (OC) plays a
key role in mitigating these degradation processes and, hence the need for monitoring OC in space and
time has intensi�ed in order to target e�ective remediation measures or political instruments [6, 7]. Soil
OC is indeed at the cross-roads of many soil functions and services through its in�uence on soil structure
and resilience to erosion, nutrient holding capacity and biological activity [8, 9]. In European agricultural
lands, soil OC is under pressure and tends to decrease due to ploughing and a decreasing supply of carbon
to arable soils with the intensi�cation of agricultural management [10, 11]. In Europe, the decline in OC
is identi�ed by the European Commission as one of the main threat to the soil resource in its proposal of
a Soil Framework Directive to protect and preserve soil and its associated functions [12]. There are still
debates on the lower limits under which OC cannot fall but there are indications that these thresholds
depends highly on percentage of clay and climatic conditions [13].

The state and change of the soil resource over large extent are often assessed through the establishment
of soil inventories or Soil Monitoring Networks (SMN) and digital soil maps. A SMN can be de�ned
as a set of locations where changes in soil properties are periodically measured [14]. Several types of
SMN's can be distinguished [14]: i) SMN's build on the purpose of monitoring the state and change of
the soil attributes, ii) resampling of locations where previous measurements have been made for other
purposes, and iii) SMN's based on soil databases gathering routine soil analyzes for farmers or other
applied experiments. There are several examples of national-scale SMN's already implemented in Europe
or across the globe [15].

Using numerical modeling (geostatistics) based on SMN's databases, digital maps are produced to
give a representation of the spatial distribution of the soil properties. There are several ways to create a
map of a soil property. Spatial prediction models can be broadly classi�ed into mechanical (or empirical)
models and statistical (or probability) models [16]. The �rst category includes techniques such as Thiessen
polygons, Inverse Distance Interpolation, Splines Interpolation and for which no strict assumptions of the
variability of the studied variable exist. In the second category, model parameters are estimated using the
probability theory and predictions are computed with their associated errors. Statistical models includes
for instance kriging, environmental regression and hybrid techniques (e.g. regression-kriging). Kriging
uses the information contained in the spatial auto-correlation of observed points/polygons to interpolate
data to unknown locations. Environmental regression, on the other hand, produce spatial prediction
equation by using sampling locations for which both inputs (covariates) and outputs (soil variable) is
known. Provided that inputs are available as spatially-continuous layers, the environmental regression
technique is able to infer soil properties at un-sampled locations.

One of the simplest approach to environmental regression is to divide the territory into LandScape
Units (LSU) having the same soil characteristics and land use. Then, the mean (or another robust
estimate) of the observed values in each LSU is computed and assigned to the LSU's (this is actually
equivalent to a simple linear regression with a categorical variable). Such approach has for instance been
followed by [17] to create a map of topsoil OC in Belgium. To produce more realistic results, however,
a multiple regression can be �tted to observed data using a set of soil covariates[18]. Soil covariates
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are environmental factors that are controlling soil formation and explaining the spatial variability of the
target variable. Such regression approach has been popularized by McBratney et al. [19] and formalized
in the so-called scorpan equation (1.1):

Px = f (s, c, o, r, p, a, n) (1.1)

where Px is the target variable at location x, f is the spatial prediction equation including factors
related to soil (s), climate (c), organisms, land use and human e�ects (o), relief (r), parent material (p),
age (a) and spatial position (n). The environmental regression approach is getting more popular as these
layers of soil covariates are becoming widely available with the rise of airborne and spaceborne sensors
producing space- and time-resolved geophysical and ecosystemic data. Basically, the function f can be
any of type of statistical model such as linear regression, stepwise multiple linear regression, Generalized
Additive Models (GAM). With the increase of the size of the SMN's and in the number of available soil
covariates, models coming from the �eld of machine learning such as boosted regression trees [20], decision
trees [21], random forests [22], etc are increasingly exploited. Kriging and environmental regression can
be combined into hybrid model strategies, which can take into account both deterministic and stochastic
sources of soil variation [23].

Creating digital maps of soil properties from these large SMN's can be particularly challenging because
the observed variation in the soil properties are the result of driving factors acting over very di�erent
spatial scales [14]. The accuracy of digital maps depend not only the sampling density of the SMN
network [24] but also on its spatial extent and spatial resolution of input data [25]. Organic carbon, as
other soil attributes, vary greatly in space as a function of scorpan factors. The e�ects of some factors
that can been observed at small scales disappears when considering OC variations of large geographical
extent and inversely. For instance, the well-documented e�ect of land clearing on OC levels in Brazilian
Amazon based on local studies could not be observed clearly at regional scales [26]. Inversely, the
in�uence of climate on OC stocks in Northeast China is weakening with decreasing spatial scale [27].
Hence, environmental correlations with the target variables vary from place to place and from one scale
to another[16].

This report presents results of a study aiming at the digital mapping of topsoil OC in Grand-Duchy
of Luxembourg (GDL), commissioned by the Administration des Services techniques de l'Agriculture
(ASTA) of theMinistère de l'Agriculture, de la Viticulture et de la Protection des consommateurs. Surface
OC maps have been already produced in neighbouring countries such as in Belgium [28, 29], France [30]
and Netherlands [31] but it is the �rst time such a mapping exercise is realized in GDL. Moreover, such
map is needed in the context of the Soil Framework Directive for which the European Commission asked
State Members to provide, on a voluntary basis, a map of topsoil OC content which will contribute to
the European Environment Information and Observation Network for soil (EIONET-SOIL) project [31].

Land cover Area (ha−1) Relative area (%)
Arti�cial land 28440 10.97
Cropland 56779 21.90
Grassland 70392 27.15
Vineyard 1359 0.52
Other Agricultural land 3202 1.23
Forest 97832 37.73
Wetland 218 0.08
Water 1042 0.40
all 259264 100.00

Table 1.1: Area and relative area of land cover classes in GDL (source: OBS)

This study adopts on the scorpan methodology to create a state-wide map of OC content in four
di�erent land use classes (cropland, grassland, forest and vineyards) representing approx. 87 % of the
GDL territory (Table 1.1). The modeling is based on a soil database collected by the Service de Pédologie
de l'ASTA including more than 2,000 samples analyzed for OC (by dry combustion) in the 2012-2013
period (which we name afterwards ASTA-SOC) and a set of soil covariates that has been gathered from
various sources. Additionally, the report will also present a descriptive analysis of the soil database
giving likely ranges of observed OC content in soils of GDL. ASTA-SOC mainly includes samples that
have been analyzed for testing soil parameters for fertilizer advices and therefore their locations have
not been selected following an optimal sampling strategy. Some locations for instance might appear
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strongly clustered. However the number of samples in ASTA-SOC is relatively large, which might favor
greater accuracy in a geostatistical context. Moreover soil data are acquired continuously at ASTA so
that derived-maps can be rapidly and easily improved or updated with upcoming data.
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Chapter 2

Methodology

2.1 Geo-pedological description of the GDL

The Grand-Duchy of Luxembourg (GDL) is a country of 2,586 km2 that shares its borders with France
in the south, Germany in the east, Belgium in the west. It bene�ts of a temperate semi-oceanic climate
with mean temperature ranging from 7.5 °C to 9.5 °C . The country can be divided in two main natural
regions (Figure 2.1). In the north, the Oesling, like the Ardennes in Belgium and Ei�el in Germany, is a
massif of the Primary Period made of Lower Devonian slate and quartzite that were highly folded during
the hercynian orogeny. The Oesling is now an sub-horizontal peneplain with deeply incised valleys and a
mean altitude of ca. 500 m. In the centre and south of the country, the Gutland is a more heterogeneous
region characterized by a south-west -facing cuesta topography which developed on monoclinal Triassic
and Jurassic sediments. Rocks formed during the same period can be found in the Gaume region in
Belgium, north of the Lorraine in France and Bitburger Gutland in Germany. Triassic deposits are made
of marls, sandstone and dolomites, all containing mineral dolomite while Jurassic sediments are made of
sandstone and marls with calcium carbonates. The Oesling is predominantly covered by shallow stony
loam soils (Cambisols in the WRB classi�cation [32]) while soils of the Gutland are mainly Luvisols. The
soil association map of GDL (1:100,000) shows 26 soil associations that we further regrouped into 10
classes (Table 2.1; Figure 2.2) representing variations in texture and mineralogy.

# Soil association Region Geologic Period Provisional WRB
classi�cation [32]

1 Oesling Oesling Lower Devonian skeletic dystric Cambisol
(siltic)

2 Argiles lourdes des
schistes bitumineux

Gutland Jurassic vertic calcaric Cambisol
(clayic)

3 Argiles lourdes du Keuper Gutland Triassic vertic dolomitic Cambisol
(clayic)

4 Argiles du Lias Inf. et
Moyen

Gutland Jurassic gleyic/stagnic endocalcaric
Luvisol (loamic)

5 Dépôts limoneux sur Grès Gutland Jurassic haplic Luvisols (loamic)
6 Grès de Luxembourg Gutland Jurassic haplic Luvisols (arenic),

Arenosols
7 Calcaires du Bajocien Gutland Jurassic leptic calcaric Cambisol

(loamic)
8 Dolomies du Muschelkalk Gutland Triassic leptic dolomitic Cambisol

(loamic)
9 Bundsandstein Gutland Triassic endodolomitic Luvisol

(loamic)
10 Autres Gutland/Oesling Alluvium, colluvium Fluvisols, Cambisols,

Regosols

Table 2.1: Soil associations and corresponding WRB classi�cation.
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Figure 2.1: The Oesling and Gutland regions, and the river net-
work.

Figure 2.2: Soil associations used in this study.
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2.2 ASTA-SOC

2.2.1 Preamble

ASTA-SOC is a compilation of OC data analyzed at the soil analytical laboratory of ASTA. Originally,
the database contained more than 8,000 OC analyzes for agricultural lands and about 1,000 analyzes for
forest land that were measured during the 2008-2013 period. Various checks were carried out to ensure
data quality: duplicated observations and outlying values were removed, etc. Samples were dried at 95 °C,
sieved by 2 mm and reduced to powder in a mortar before SOC analysis. At ASTA, samples were analyzed
during the last 5 years with di�erent instruments and slightly di�erent protocols (Table 2.2) which might
induce temporal discrepancies between OC analyzes due to inter-instrumental errors. An analysis of the
replicate error between the OC analyzes produced with the TruSpec CN (LECO Corporation, Michigan,
USA) and the Multi EA 4000 (Analytik Jena AG, Germany) is given in Annex A. The replicate errors
were found too large (between 3 and 7 g C kg-1) and therefore only samples measured with the Multi
EA 4000 instrument were kept in the database. In total, after data cleansing, a total of 3,492 samples
were included in ASTA-SOC, including 984 samples taken in cropland, 323 samples in grasslands, 1,145
samples in vineyards and 1,011 samples in forests (Figure 2.3).

Year Date of the last sample Intrument & Methodology Method�

2008 - LECO RC 412
TC = dry Combustion at 500◦C
TOC = TC

2009 - LECO RC 412
TC = dry Combustion at 500◦C
TOC = TC

2010 21/02/2011 LECO TruSpec CN

TC = dry combustion at 900◦C
TIC = dry combustion after
heating at 500 ◦C for 5h
TOC = TC-TIC

2011 20/01/2012 LECO TruSpec CN

2012 23/01/2013 Analytik Jena Multi EA 4000

TC = dry combustion at 1200◦C
TIC =Measure of CO2 after
treatment to phosphoric acid 40%
TOC = TC-TIC

2013 06/09/2013 Analytik Jena Multi EA 4000

� TC = Total Carbon; TOC = Total Organic Carbon; TIC = Total Inorganic Carbon

Table 2.2: Methods of OC analysis used at the ASTA soil laboratory

2.2.2 Soil database for cropland, grassland and vineyards

Sample were collected in agricultural �elds all over GDL for soil testing. The sampling unit is the parcel
(polygons) for which one composite sample is taken to estimate its (average) soil properties. The depth
at which samples were collected di�ers from one land cover to another: 0-25 cm in croplands, 0-10 cm
in grasslands and 0-30 cm in vineyards. Each parcel has an identi�er (named FLIK ) corresponding to a
unique agricultural parcel in the the o�cial land parcel information system (LPIS) of GDL, with a mean
area of 1.8 ha, which allowed to retrieve the location of the soil analyzes by merging the soil data with the
parcel plan. The position of the samples were de�ned as the centroid of the parcels. We should note that
converting areas (parcels) to points using polygon centroids is a great simpli�cation and is not strictly
appropriate as it assumes that the spatial support is constant in shape and size (see [33]) but this will
greatly facilitate the subsequent spatial modeling of OC. Only the last soil analyzes done for one FLIK
were kept in the database. Metadata associated with the soil analyzes were available such as cultivation
type and soil texture in four broad classes: light (L), moderately light (M), heavy soils (S) and a special
class for samples from the Oesling area (OM)1.

1These classes correspond to texture classes of the Luxemburgish soil classi�cation: L = {S+Z}; M = {L+P+E+A};
OM = G; S = U
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Figure 2.3: Total number of samples in the database per land cover class

2.2.3 Soil database for forests

Samples were collected from 1998 to 2001 in the framework of Inventaire Forestier National (IFL) [34],
a survey aiming at providing information on the state of the forest resources in GDL during which 1,600
sampling points located on a grid (500 m by 1000 m) were visited. One of the aspects of the survey
concerned forest soils. Composite soil samples were taken at two depths (0-20 and 20-40 cm) within
circular sampling plots of max. 18 m of radius located on the national grid. Soil analyzes are still
ongoing. Around 1,000 samples for the 0-20 cm layer have been already measured by ASTA and includes
the following attributes: pHCaCl2 , pHwater, P, N, Na, Mg and OC. Carbon content was analyzed with
the LECO TrueSpec CN instrument from 2011 to 2013. In addition to geographical coordinates, the IFL
database contains several environmental variables such as forest stand, canopy cover, stand age, type of
humus and texture, etc that can be linked to the soil database.

2.3 Soil covariates

A set of spatial layers in raster format were prepared with a resolution of 90 meters and with the same grid
topology. While some of the soil covariates were initially available at a smaller resolution (e.g. the digital
elevation model has a 5 m pixel resolution), we resampled all rasters to the resolution corresponding to
the one of the raster with the maximum resolution. These operations and generally all the manipulations
related to spatial data were realized with the raster [35] and sp [?] R packages. We describe thereafter
how we created a stack of soil covariates for the spatial modeling topsoil OC in GDL.

2.3.1 Digital Elevation Model (DEM) and its derivatives

We used the DEM from the Base de Données TOPO/CARTO (BD-L-TC) altimetric product of the
Administration du Cadastre et de la Topographie, with a resolution of 5 m. Using the SAGA-GIS software
[36], we derived from the DEM a series of morphometric and hydrologic variables including: slope, aspect,
pro�le, plan and general curvature, topographic position index (TPI [37]), �ow accumulation, upstream
slope length, LS factor of the RUSLE equation and wetness index (Figures 2.4 and 2.5).

Following Zar [38], we converted aspect (in degrees) into two separate continuous variables according
to Eq. 2.1 and 2.2:

eastness = sin (aspect · π/180) (2.1)

northness = cos (aspect · π/180) (2.2)

Northness and eastness represent the degree to which aspect is close to the north or to the east and take
values in the range [-1; +1].
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Figure 2.4: Digital Elevation Model (/meters) and slope (/degrees).
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Figure 2.5: Eastness and northness derived from the DEM.

1
0



Figure 2.6: Location of meteorological stations (+) used to map average temperature and precipitation
patterns in GDL.

Figure 2.7: Samples of BDSOL1964-1973 (+ = Gutland; o = Oesling) in the soil texture classi�cation
triangle of GDL.
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Figure 2.8: Mean temperature (/°C) and precipitation (/mm) during the 1971-2000 period.
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Figure 2.9: Map of (A) clay, (B) silt and (C) sand content as produced by assigning mean values per soil
associations (left panels) or regression kriging (right panels). Location of the pro�les are indicated with
crosses (+).
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Figure 2.10: Histogram of pixel values of the (A) clay, (B) and (C) sand maps as predicted by the mean
per soil association method (left panels) and regression kriging (right panels).
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Figure 2.11: Reclassi�cation of land cover classes from the OBS dataset.
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Figure 2.12: Hydrological classes as de�ned in the ERRUISSOL project. Figure 2.13: C factor from the ERRUISSOL project.
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2.3.2 Temperature and precipitation

Spatial layers representing climatic variations in GDL were created by spatial interpolation of tem-
perature and precipitation average for the period 1971-2000 data from weather stations in GDL and
neighboring countries (Figure 2.6). Aggregated meteorological data of Luxembourg weather stations
were obtained from the Observatory for Climate and Environment, Department of Environmental and
Agro-Biotechnologies of the Centre de Recherche Public - Gabriel Lippmann. This dataset includes pre-
cipitation records of 25 stations and temperature records for 7 stations. We combined this dataset with
weather data of Belgium (Koninklijk Meteorologisch Instituut, KMI), France (Meteo France) and Ger-
many (Deutscher Wetterdienst, DWD) obtained from Dr Jeroen Meersmans (Exeter University) and
that he gathered for creating precipitation and temperature maps of Belgium [39]. Climatic maps were
created by modeling temperature and precipitation with altitude using thin-plate splines regression. Us-
ing altitude as covariate for mapping climatic variables can improve predictions dramatically [40]. The
smoothing parameter is chosen automatically by generalized cross-validation. Elevation data were de-
rived from the Shuttle Radar Topography Mission (SRTM) mission of the NASA [41]. The resulting
temperature and precipitation maps are given in Figure 2.8.

2.3.3 Soil

Three maps of soil texture (sand 50 µm-2mm, silt 2-50µm, clay < 2 µm) were created based on a
database of 766 historical soil pro�les from the national soil database (BDSOL1964-1974) analyzed for
granulometry. Only the �rst soil layer (0-10cm) was kept in the database. The texture of these samples
is shown in Figure 2.7. We adopted two approaches for the spatialization of the observations. First, we
computed the mean sand, silt and clay content per soil association (Figure 2.2) and assigned the resulting
values to the corresponding spatial polygons. In a second approach, we further computed the residuals
between the observations and the mean and kriged the residuals in space (i.e. regression kriging). Maps
of texture obtained with the two strategies are shown in Figure 2.9. The regression kriging maps show
generally more detailed spatial patterns. Also, the histogram of the pixel values of the three maps indicate
a more realistic outcome for regression kriging approach (Figure 2.10). In addition to soil texture, we used
a spatial layer representing the hydrological status of soils as estimated by a project also commissioned by
ASTA called ERRUISSOL2 aiming at the mapping of risks of erosion and runo� in GDL. The hydrological
status of soils is divided into four classes, having high (A) to low (D) in�ltration capacity (Figure 2.12)
and was de�ned as a function of texture, depth, strati�cation and drainage of soils and are based on the
the 1:25,000 soil map of GDL and the soil association map for areas that are still not mapped at the
1:25,000 scale.

2.3.4 Land cover & human in�uence

Land cover data was obtained from the Occupation Biophysique du Sol (OBS), an inventory of the land
cover in GDL at the scale of 1:10,000 based on aerial photography dating from 1999. The 76 di�erent land
cover and biotope classes were reclassi�ed into �ve main land cover: cropland, (permanent) grassland,
vineyard, forest and other, as shown in Figure 2.11. The data is in polygon format and was therefore
converted to raster with a 90 m resolution. We also incorporated in our study a raster map of the C
(crop) factor of the Universal Soil Loss Equation (Figure ??), computed through an analysis of the crop
rotation systems 2010-2012 realized during the ERRUISSOL project (Figure 2.13). Finally, we included
in the spatial modeling of OC the livestock intensity of 2012 expressed in fertilizing units per ha (UF =
unité fertilisante / 80 kg N ha-1) aggregated at the level of GDL municipalities.

2.4 Modeling ASTA-SOC and mapping surface OC in GDL

Attributing the values of the covariates (independent variables) to OC observations (dependent variable)
in ASTA-SOC is required to develop the spatial models and produce a map. For soils under cropland,
grassland and vineyards land cover, the sampling units are the parcels. The mean values of the covariates
within each parcel was computed and attributed to the corresponding observations in ASTA-SOC through
their FLIK number (see section 2.2.2). For IFL data, the values of the covariates under each sample
location was simply extracted and attached to observations of ASTA-SOC.

2Etablissement d'une carte thématique sur les zones à risque d'érosion et de ruissellement au Grand-Duché du Luxem-

bourg à partir de la carte des sols.
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The spatial variation of OC was modeled through Generalized Additive Models (GAM) [42] as imple-
mented in the mgcv package [43]. This regression technique can account for non-linear relationships in
the data using a set of smooth functions. A general equation for a GAM regression model can be written
as (Eq. 2.3):

E (Y | X1, X2, . . . , Xp) = α+ f1 (X1) + f2 (X2) + . . .+ fp (Xp) (2.3)

where Y is the dependent variable, X1X2, . . . , Xp represent the covariates and the fi's are the smooth
(non-parametric) functions. Since GAM is in essence an extension of generalized linear models, the
conditional mean µ (X) of the dependent variable Y is related to an additive function of the covariates
via a link function g [44](Eq. 2.4):

g [µ (X)] = α+ f1 (X1) + f2 (X2) + . . .+ fp (Xp) (2.4)

Due to the logarithmic distribution of OC in topsoils, we used the log-linear link function g (µ) =
log (µ). The GAM model is build using penalized regression splines and the smoothing parameters were
estimated by Maximum Likelihood. An extra penalty is added to each term so that it can each term
can potentially be set to zero during the �tting process. The model for each land cover was developed
on a training set containing two-thirds of the total number of samples, selected by random sampling
within subgroups of the data de�ned by the percentiles of the response. The remaining samples were
assigned to a test set to assess model performance. A �rst model with all the covariates was developed
on the training set and a backward selection of the terms was followed using their approximate p-values.
This was done by sequentially dropping the single term with the highest non-signi�cant p-value from the
model and re-�tting until all terms are signi�cant as indicated in [43]. The level of signi�cance was set
at p < 0.05. The mgcv package provides a Bayesian approach to compute standard errors and con�dence
interval for the predictions. Model accuracy was evaluated with the Root Mean Square Error, as given
by (RMSE, Eq. 2.5):

RMSE =

√∑n
i=0 (ŷi − yi)

n

2

(2.5)

where ŷi is the predicted value of observation i in the test set, yi is the observed value and n the total
number of observations in the test set. We also computed the Ratio of Performance to Deviation (RPD),
which allows to normalize RMSE values (Eq. 2.6):

RDP =
SD

RMSE
(2.6)

where SD is the standard deviation of the test set. After this calibration phase, a �nal model was built
with all the samples (i.e. in both the training and test sets) using the covariates selected by the stepwise
procedure, in order to improve model accuracy and representativity over te GDL territory. The �tted
models for each land cover was then applied to the stack of spatial layers (covariates) to map topsoil OC
content and associated model uncertainties (con�dence intervals). We should note that RMSE computed
in Eq. 2.5 does not give a correct measure of the true map accuracy, which should preferably assessed
using a set of samples taken from randomly selected locations [45].
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Chapter 3

Results

3.1 Exploratory analysis

3.1.1 Summary statistics and indicative OC ranges

To assist soil management in GDL, it is important to de�ne likely or indicative ranges of observed OC
in di�erent soils, which could serve as reference levels on which a decline or increase in OC could be
monitored1 [13]. Here, we propose to classify OC observations based on soil associations (which re�ects
somewhat also climatic conditions) and land cover and use the median and inter-quartiles range (IQR)
of the OC distributions (Table 3.1-3.4) to de�ne indicative OC range in each soil association-land cover
class. In each category, any value close to the median or within the boundaries de�ned by the IQR can be
quali�ed as normal or standard values prevailing under current environmental conditions. Values outside
the IQR indicate soils either depleted or enriched in OC in relation to the majority of observations in the
same category.

Cropland soils in ASTA-SOC (n = 984) have a median OC content as low as 16 g C kg-1but a large
variation exists between the di�erent soil associations (Table 3.1; Figure 3.1-3.2). The Oesling region reach
indeed a median of 28.3 g C kg-1while soil associations from the south of Luxembourg (Gutland) have
median values between 10 g C kg-1 (Grès du Luxembourg) and 21 g C kg-1(Argiles lourdes des Schistes
Bitumineux ). Large OC variations are also apparent when samples are grouped according to the 4 texture
classes de�ned by ASTA (Figure B.1), giving the following sequence in terms of OC content: L (leicht
= light texture) < M (mittel = medium texture) < S (shwer = heavy texture) < MO (mittel Oesling =
medium texture of the Oesling region, stony soils). In cropland soils, the Inter-Quartiles Ranges (IQR)
computed for each association are generally less that 10 g C kg-1 indicating a relatively small OC variation
within each association. Some soil associations in the Gutland show a signi�cant portion of observations
with very low OC content (under 10 g C kg-1), which make these soils probably sensitive to various
degradation processes such as erosion. These OC observations in croplands are similar to published
values in Belgium for similar environmental conditions as observed in the REQUASUD database [47]. In
the Belgian Ardennes, corresponding to the Oesling region, the median is 31 g C kg-1 (q1 = 27 g C kg-1,
q3 = 35 g C kg-1) and in the Belgian Jurassic region, corresponding roughly to the Gutland, the median
is 16 g C kg-1 (q1 = 13 g C kg-1, q3 = 20 g C kg-1) .

The OC content in grassland (n = 323) is sensibly similar in the Oesling and Gutland, with a median
around 34 g C kg-1(Figure 3.1). There are however large variations between soil associations in Gutland
(Table 3.2; Figure 3.2). Median OC values reach 40 to 50 g C kg-1 for clay-rich soils of the Argiles du
Lias Inf. et Moyen, Argiles lourdes du Keuper and Argiles lourdes des schistes bitumineux while loamy
and sandy soils of Gutland (Buntsandstein, Dolomies du Muschelkalk, Calcaires du Bajocien, Grès de
Luxembourg, Dépôts limoneux sur Grès) have median OC generally less than 26 g C kg-1. The IQR of
grassland is on average approximately 18 g C kg-1 indicating larger within-class OC variations than in
cropland soils.

The median OC content of forest soils is 33 g C kg-1(Table 3.3), which is remarkably similar to the

1De�ning critical threshold of OC content under which the fertility of soils is impaired due to degradation of the soil
physical properties or disruption of nutrient cycle would be also of great practical interest but is di�cult [46]. There are
however evidences that such a treshold is ca. at 10 g C kg-1under which, irrespective of the soil type, it may not be possible
to reach potential crop yields. At this point, the decomposition of organic matter is in equilibrium with inputs of organic
matter from plant residues and yields may be a�ected due to the low amount of mineralizable-N, even with the addition of
N-P fertilisers [46].
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Figure 3.1: Histogram of OC (/g C kg-1) in the ASTA-SOC database under cropland, grassland, forest
and vineyard land cover for the Northern (Oesling) and Southern (Gutland) areas of GDL.

median OC content of grassland soils. This observation masks however great discrepancies between the
two land cover classes. First, in the Oesling, the OC content is distinctly higher in forest soils than
in grassland, with a median OC content of almost 45 g C kg-1. Secondly, in Gutland, the quantity
of OC stored in clayey soils is higher in grassland than in forests (Figure 3.2). Thirdly, forest seems
to have a larger dispersion of OC values in their soils (Figure 3.2) with a IQR reaching almost 30 g C
kg-1(Table 3.3). This variation is mainly due to a large OC variation in the Oesling region, Buntsandstein
and Dolomies du Muschelkalk associations (Table 3.3; Figure 3.2) because other soil associations show
generally lower IQR.

Soil associations n Min q1 x̄ x̃ q3 Max IQR

Oesling 266 12.8 24.3 29.8 28.3 34.6 68.7 10.3
Buntsandstein 59 7.1 13.5 16.6 15.1 18.0 43.9 4.4
Dolomies du Muschelkalk 27 11.3 16.4 25.8 27.8 32.0 48.4 15.6
Calcaires du Bajocien 1 15.7 15.7 15.7 15.7 15.7 15.7 0.0
Grès de Luxembourg 215 6.5 8.9 10.9 10.2 11.7 32.5 2.8
Dépôts limoneux sur Grès 146 6.3 10.3 12.6 11.9 14.3 26.7 4.0
Argiles du Lias inf. et moyen 129 8.0 15.6 19.2 19.0 22.8 33.2 7.3
Argiles lourdes du Keuper 85 7.4 12.5 15.0 14.3 17.3 25.5 4.8
Argiles lourdes des schistes bitumineux 7 11.3 16.7 22.6 21.2 25.0 42.6 8.3
Autres 42 7.9 11.8 17.1 15.3 21.2 40.4 9.4

7 12.8 13.5 17.2 16.5 19.9 23.9 6.4
all 984 6.3 11.3 18.9 16.0 24.7 68.7 13.4

Table 3.1: Summary statistics of OC in Cropland per soil associations
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Figure 3.2: Boxplot2 of OC (/g C kg-1) in the ASTA-SOC database under cropland, grassland, forest and vineyard land cover as a function of the soil associations
(1 = Oesling, 2 = Buntsandstein, 3 = Dolomies du Muschelkalk, 4 = Calcaires du Bajocien, 5 = Grès de Luxembourg, 6 = Dépôts limoneux sur Grès, 7 = Argiles
du lias inf. et moyen, 8 = Argiles lourdes du Keuper, 9 = Argiles lourdes des schistes bitumineux, 10 = Others).
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Soil associations n Min q1 x̄ x̃ q3 Max IQR

Oesling 77 1.2 29.7 36.0 34.3 41.5 65.4 11.9
Buntsandstein 11 16.9 19.5 26.0 22.1 27.4 53.7 7.9
Dolomies du Muschelkalk 11 6.8 11.5 25.8 29.1 33.1 58.1 21.6
Grès de Luxembourg 11 14.1 15.6 20.1 15.8 18.4 55.5 2.8
Dépôts limoneux sur Grès 30 8.5 20.5 27.4 26.3 33.0 58.6 12.4
Argiles du Lias inf. et moyen 49 12.4 33.3 42.4 42.2 52.2 75.2 18.9
Argiles lourdes du Keuper 43 17.8 32.0 41.7 39.4 49.8 73.2 17.9
Argiles lourdes des schistes bitumineux 18 25.3 41.5 52.1 48.9 61.1 100.8 19.6
Autres 71 8.2 23.4 33.6 30.9 40.5 84.6 17.1

2 27.6 29.6 31.7 31.7 33.7 35.7 4.0
all 323 1.2 26.0 36.1 33.7 43.9 100.8 17.8

Table 3.2: Summary statistics of OC in Grassland per soil associations

Soil associations n Min q1 x̄ x̃ q3 Max IQR

Oesling 455 11.0 34.7 49.1 44.6 57.5 156.0 22.9
Buntsandstein 50 8.3 18.5 36.8 28.3 50.3 121.0 31.8
Dolomies du Muschelkalk 23 13.4 23.1 41.5 40.5 52.4 89.8 29.3
Calcaires du Bajocien 5 7.0 17.8 31.7 34.1 36.3 63.3 18.5
Grès de Luxembourg 217 5.1 12.9 20.2 17.0 23.3 74.8 10.4
Dépôts limoneux sur Grès 63 7.2 18.4 23.2 22.0 26.4 72.7 8.0
Argiles du Lias inf. et moyen 65 9.0 18.5 27.4 23.6 35.2 62.0 16.7
Argiles lourdes du Keuper 63 7.0 19.1 26.4 24.0 31.6 71.8 12.4
Argiles lourdes des schistes bitumineux 8 16.6 23.4 30.3 26.6 35.6 52.7 12.2
Autres 60 11.9 24.8 42.2 39.9 58.4 105.0 33.6

2 19.5 27.8 36.0 36.0 44.3 52.6 16.5
all 1011 5.1 20.0 37.0 32.9 49.2 156.0 29.2

Table 3.3: Summary statistics of OC in Forest per soil associations

Soil associations n Min q1 x̄ x̃ q3 Max IQR

Buntsandstein 20 6.4 13.2 18.6 17.6 25.0 32.9 11.8
Dolomies du Muschelkalk 349 0.9 10.3 19.1 17.1 23.8 72.2 13.5
Calcaires du Bajocien 18 4.2 9.3 16.9 13.2 21.1 58.6 11.7
Grès de Luxembourg 4 9.8 10.7 14.6 12.1 15.9 24.3 5.2
Dépôts limoneux sur Grès 9 4.8 12.0 13.9 16.0 16.8 19.7 4.8
Argiles du Lias inf. et moyen 22 8.5 12.7 18.1 18.4 22.0 30.3 9.3
Argiles lourdes du Keuper 403 1.8 10.9 16.7 14.5 20.6 69.3 9.7
Autres 238 1.5 11.4 16.7 15.4 20.6 45.8 9.2

82 3.4 13.0 20.9 18.5 25.3 61.5 12.3
all 1145 0.9 11.1 17.8 16.0 21.8 72.2 10.8

Table 3.4: Summary statistics of OC in Vineyard per soil associations

Soils under vineyard have about the same median OC content than in cropland soils of GDL (Table
3.4). In vineyard soils, soil associations show a median OC content oscillating between 12 (Grès du
Luxembourg) and 18.4 g C kg-1(Argiles du Lias Inf et Moyen; Table 3.4) with an IQR lower than 13.5 g
C kg-1, indicating low inter- and intra-class OC variation. However, it can be observed that samples from
the Dolomies du Muschelkalk and Argiles lourdes du Keuper have a relatively large number of outlying
values with high OC content (Figure 3.2) and maximum OC content reaching around 72 g C kg-1.

3.1.2 Relations with the soil covariates

Since the process to create OC maps is essentially empirical, it is important, as a �rst step, to understand
the relationships between OC content and the covariates. The level of OC content in soils is controlled
by the balance between the input of Organic Matter (OM) into the soil and the decomposition (or
mineralization) of OM by micro-organisms, and these two processes are to some extent captured by the
covariates. Soils under cropland and vineyard have on average ca. 50 % less OC than those under
grassland and forest (Table 3.1-3.4), showing the strong e�ect of land cover on OC levels. Cropland

2The two hinges of the boxes are the �rst and third quartile, the middle bar indicates the median of the distribution.
The whiskers (i.e. lines extending away from the boxes) extend to the most extreme data point which is no more than 1.5
times the length of the boxes.
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and vineyard soils show generally depleted OC levels due to ploughing which breaks up soil aggregate
structures and increase thereby the exposition of physically-protected OC to micro-organisms [48, 49].

In croplands, high OC values can be observed in the Oesling but also, to some extent, in clay-rich
soils of Gutland, especially in the south-east corner of GDL near the French-German border (Figure
3.3). This pattern also appears in Figure 3.4 showing an U-shaped relationship between OC and the
longitude. This di�erence in OC content between soils of the Oesling and Gutland can be linked to
the climatic gradient between the south and the north of the GDL territory (Figure 2.8), which itself is
highly related to altitude, as indicated by a relatively strong relationship between OC and temperature
(ρ = −0.51), precipitation (ρ = 0.54) and altitude (ρ = 0.58; Figure C.1). The Oesling region experiences
indeed a colder climate and longer frost periods than Gutland. Higher OC content in areas with higher
precipitation and lower temperature is often observed due the e�ects of precipitation on Net Primary
Productivity, lower levels of oxygen concentration in wetter soils (anaerobic conditions), and decreased
microbial activity or decomposition of organic matter in colder climate [50, 51, 52]. In general, OC levels
increase with increasing precipitation and for any given level of precipitation, decrease with increasing
temperature [51]. A clear, but somewhat less strong relationship can be observed between OC and C
factor (ρ = −0.35). This negative correlation is explained by the fact that the C factor increase with
a decrease in crop cover, which in turn can be related to the rate of OM incorporation into the soils
trough plant residues and OM decomposition through variations in runo� and erosion rates. Livestock
intensity show a positive correlation with OC in croplands re�ecting the positive in�uence of manure
application on OC levels but the relationship seems only limited (ρ = 0.17). The aggregation of the
data at the municipality level might explain this low correlation. While amendments such as manure,
lime and fertilizer are well-known to induce changes in OC content in soils (see [53]), these variables
are very di�cult to include in the environmental regression approach due to the scarcity of detailed
spatio-temporal crop management data at large scales.

Morphometric variables, including slope and aspects, have very small correlations with OC content
(|ρ| < 0.15; Figure C.1), suggesting that position in the landscape and its control on the water supply
and erosion rates plays a little role in the patterns of OC content in croplands of GDL. It is however also
possible that the scale at which samples have been collected (i.e. �eld composites) and/or the spatial
resolution of the morphometric covariates are too coarse to capture variations linked to local OC transfer
processes. Soil texture seems to be a major driver of OC distribution in croplands, although the positive
correlation is only visible for soils of Gutland (ρ = 0.56) since the texture of Oesling soils varies only
little (Figure 3.5). This is in agreement with the results of previous studies in various environments[54,
55, 18, 56] and empirically con�rms the positive impact of the clay fraction on OC through chemical
stabilization [48] and higher soil moisture content (due to poor drainage status) leading to lower OC
mineralization rates [57, 58]. Fine-textured soils tend also to contain more OC due to their greater
nutrient and water-holding capacity, favoring plant production and thereby the amount of fresh OM
returning into the soil.

The spatial distribution of OC seems more di�cult to interpret in grasslands than in croplands,
partly because of the low number of observations (Figure 3.3). Climatic, management and morphometric
variables have only a weak correlation with OC in grassland soils (Figure 3.6, C.2). Clay content is the
only covariate showing a strong and positive in�uence on OC levels in Gutand (ρ = 0.5; Figure 3.5). As
noted earlier (section 3.1.1), clay deposits from Gutland tend indeed to store more OC than other soil
associations (Figure 3.2). In forest, a clear distinction between the Oesling and Gutland can be observed
(Figure 3.3). Most of observations with high OC (> 100 g C kg-1) occur in the Oesling region. The
correlations with climatic variables are higher than in grasslands (Figure 3.7) and the correlation with
clay content in Gutland is less pronounced (ρ = 0.24; Figure 3.5). Similarly to croplands and grasslands,
the relations between OC and morphometric variables are weak in forest soils (Figure C.3). Concentrated
along the Moselle river valley, OC observations for vineyard soils do not show evident spatial patterns
(Figure 3.3), nor any signi�cant correlations with the covariates (Figure 3.8, C.4). This contrasts with
observations in vineyards of France [56], where higher correlations were found with texture (ρ = 0.32
), temperature (ρ = −0.31) and slurry and famyard manure-related OC (ρ = 0.41). Vineyards in GDL
are concentrated in only one river valley characterized by rather homogeneous environmental conditions
which can explain these poor correlations with the covariates. Another explanation could be the high
percentage of land reallocation done in the past.
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Figure 3.3: Observed OC values (/ g C kg-1) of samples of the ASTA-SOC database under cropland,
grassland, forest and vineyard land cover. For clarity, these four maps are available in larger size in
Annex B.2 to C.4
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Figure 3.4: Scatter plot of OC (/ g C kg-1) as function of geographical coordinates (x,y, in LUREF),
mean annual temperature (/°C), mean annual precipitation (/mm), C factor and livestock intensity (/
80 kg N ha-1) for cropland soils. The gray color scale represents the density of points in each hexagonal
bin of the plot.

Figure 3.5: Scatter plot of OC (/ g C kg-1) as function of clay content (/ %), land cover type and region
(Oesling, Gutland).
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Figure 3.6: Scatter plot of OC (/ g C kg-1) as function of geographical coordinates (x,y, in LUREF),
mean annual temperature (/°C), mean annual precipitation (/mm), C factor and livestock intensity (/
80 kg N ha-1) for grassland soils.

Figure 3.7: Scatter plot of OC (/ g C kg-1) as function of geographical coordinates (x,y, in LUREF),
mean annual temperature (/°C) and mean annual precipitation (/mm) for forest soils. The grey color
scale represents the density of points in each hexagonal bin.
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Figure 3.8: Scatter plot of OC (/ g C kg-1) as function of geographical coordinates (x,y,
in LUREF), mean annual temperature (/°C), mean annual precipitation (/mm), C factor
and livestock intensity (/ 80 kg N ha-1) for vineyard soils. Figure 3.9: Semi-semivariograms of OC under cropland, grass-

land, forest and vineyard land cover.
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The experimental semivariograms of the OC observations show some very di�erent spatial structures
between the di�erent land cover (Figure 3.9). Cropland soils have a small nugget-to-sill ratio, indicating
a high degree of spatial dependence. The range of the semivariogram is large which can express the fact
that OC in croplands is mostly determined by long-range factors such as temperature and precipitation.
The semivariogram is possibly unbounded, which can be related to the presence of a trend in the data
(probably due to the di�erences between the Oesling and Gutland regions). In grasslands, OC content
show also a low nugget-to-sill ratio but with a much smaller range (ca. 2 km). The spatial dependence of
OC in grasslands occurs at a much lower distance than croplands and can be due to the above-mentioned
role of the clay content (which can vary on short distances) on OC spatial variation. Vineyard and forest
soils show very little spatial structures in their semivariograms. This suggests that OC content vary as
it was almost randomly distributed in space and hence the spatial variation of OC in these environments
will be very di�cult to model.

3.2 Model results, performance & OC maps

The exploratory analysis showed that there are conspicuous relationships between OC content of soils
and the natural and anthropic variables. The main drivers of OC spatial distribution in GDL are land
cover, climatic conditions and soil types. The same combination of driving factors has been identi�ed in
similar environments, for instance in England and Wales [13] and in France [20]. These relations set the
basis for the extrapolation of the OC observations of the ASTA-SOC database in space that we present
thereafter. GAM model results for each land cover are presented in Tables 3.5-3.8.

3.2.1 Croplands

The backward stepwise procedure selected elevation, precipitation, temperature, clay and projected co-
ordinates (x,y) to model the spatial variation of OC in cropland soils, achieving an explained deviance of
0.78 (Table 3.5). The remaining deviance should be related to other factors not included in the analysis,
such as fertilizer application or rotation patterns. The predicted-observed graph (Figure 3.10) shows that
the GAM model �t well to not only the training set but also to the test set, with a R2of 0.66 and RMSE of
5.5 g C kg-1. There are indications, however, that observations with high OC content (> 40 g C kg-1) are
under-predicted (Figure 3.10), due to the low number of samples with such high OC content in croplands.
The GAM model was applied to the set of covariates, resulting in a continuous map of OC content (Figure
3.11) and associated standard error of the predictions (Figure 3.12). The spatial distribution of OC in
croplands appears to be mainly driven by elevation. The map depicts a north-South gradient in OC in
GDL, with high OC content generally found in high plateaus of the Oesling. In Gutland, OC variations
are related to the soil associations (Figure 2.2) and the spatial distribution of clay content (Figure 2.9),
with higher OC content found in the south-west (Minette area). The map shows however unexpected high
OC concentrations in the Harlange area (x: 57 500; y: 111 000) and along the Moselle river, which might
be unrealistic and probably due to the absence of sampling points in this area (Figure B.2). Generally,
it is probable that pixels that are predicted above 40 g C kg-1 are in the extrapolation domain and likely
to be inaccurate because almost no observations in the ASTA-SOC database were predicted above this
value (Figure 3.10). The map of the prediction standard error con�rms indeed that the predictions in
these areas should be viewed with caution. We can expect that such artifacts related to the mapping
process will be �xed when new samples from these areas will be incorporated in the database.

3.2.2 Grasslands

The GAM model for grasslands, explaining 35 % of the deviance in the calibration set, included three
terms: clay, hydrological classes (as de�ned by the ERRUISSOL project, only signi�cant in the Gutland)
and the coordinates (only signi�cant in the Gutland, Table 3.6). This con�rms the important role of
texture and drainage on OC concentrations in grasslands. This is true only in Gutland, because in the
Oesling these factors are more constant.The GAM model shows poor results when applied to test set,
with an R2 of 0.36 and a RMSE of 11.4 g C kg-1(Figure 3.10). The predicted-observed plot show, as
for croplands, that the model tends to under-estimate high OC values (> 60 g C kg-1). Compared to
croplands, the OC map show more contrasted patterns with large variations within a few kilometers
(Figure 3.13). In the Oesling, there is overall more OC at high altitude and in the west, although the
map of standard errors suggest that predictions in the west of the Oesling should be taken with care. In
Gutland, sandy soils in the center and west have less OC (± 10-20 g C kg-1) than elsewhere.
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Figure 3.10: Predicted vs observed OC (/ g C kg-1) in the training and test sets as obtained by the GAM
model for cropland, grassland, forest and vineyard soils.
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Figure 3.11: Map of predicted OC content (/ g C kg-1) in cropland soils, assuming the whole territory is
covered by cropland. Areas in white corresponds to environments where no predictions could be made.
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Figure 3.12: Map of the standard error of predicted OC content (/ g C kg-1) in cropland soils.
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Figure 3.13: Map of predicted OC content (/ g C kg-1) in grassland soils, assuming the whole territory is
covered by grassland. Areas in white corresponds to environments where no predictions could be made.
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Figure 3.14: Map of the standard error of predicted OC content (/ g C kg-1) in grassland soils.
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Table 3.5: Summary of the full and reduced GAM models for croplands

Full model Reduced model
(Intercept) 2.85∗∗∗ 2.86∗∗∗

elevation 5.99∗∗∗ 5.91∗∗∗

eastness 1.88∗∗∗

northness 1.21
slope 0.76∗

precipitation 2.55∗∗∗ 3.22∗∗∗

temperature 6.38∗∗∗ 6.25∗∗∗

C factor 3.08∗∗∗ 3.06∗∗∗

clay 2.97∗∗∗ 2.95∗∗∗

Livestock intensity 1.93∗

LS factor 1.96∗∗

path length 3.43∗∗

x,y 12.17∗∗∗ 12.25∗∗∗

AIC 4003.92 4035.78
BIC 4211.47 4195.50
Log Likelihood -1955.65 -1982.25
Deviance 15266.92 16562.65
Deviance explained 0.74 0.72
Dispersion 25.12 26.78
R2 0.72 0.71
GCV score 2049.63 2057.01
Num. obs. 653 653
Num. smooth terms 12 6
***p < 0.001, **p < 0.01, *p < 0.05

Table 3.6: Summary of the full and reduced GAM models for grasslands

Full model Reduced model
(Intercept) 3.53∗∗∗ 3.52∗∗∗

elevation 0.55∗

eastness 0.81∗

northness 0.97
slope 0.00
precipitation 0.00
temperature 0.56
C factor 0.88∗∗

clay 0.96∗∗∗ 0.94∗∗∗

Livestock intensity 0.00
x,y:Oesling 0.00 0.49
x,y:Gutland 4.61∗∗ 5.32∗∗

hydrological class�:Oesling 0.49 0.82∗

hydrological class�:Gutland 0.89∗∗ 0.87∗∗

AIC 1418.50 1430.68
BIC 1459.00 1463.93
Log Likelihood -696.52 -704.89
Deviance 26107.42 28681.34
Deviance explained 0.41 0.35
Dispersion 157.02 170.17
R2 0.37 0.32
GCV score 714.13 718.98
Num. obs. 178 178
Num. smooth terms 13 5
***p < 0.001, **p < 0.01, *p < 0.05
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The in�uence of texture and drainage on OC content is clearly visible, although uncertainties are very
high for pixels that are predicted to contain high OC content (Figure 3.13-3.14) because of high clay
content (Figure 2.9). There are indeed no observations with high clay content (> 60 %; Figure 3.5) in
grasslands, which make these predictions pure extrapolations. In the north-west of the Gutland, an area
is predicted to have high OC content but is an artifact due to the low number of sampling points (Figure
2.3 and B.3). Due to the relative short-range spatial variation of OC under grasslands (Figure 3.9), it is
critical to have a large number of observations located such as to cover appropriately the spatial domain
and the variation in the covariates in order to produce reliable predictions over the entire territory.

3.2.3 Forest and vineyards

For forest soils, the GAM model included precipitation, clay and coordinates and explained 39 % of the
deviance (Table 3.7). Better results were obtained by using two separate smooth terms of the coordinates
for the Oesling and the Gutland. Despite a R2 of 0.4 in the training set and 0.37 in the test set, the
GAM �t should be considered to be poor. The R2 is indeed in�ated by the presence of two clusters of
prediction points, at relatively low and high OC content (Figure 3.10), which corresponds to the two
di�erent regions. Looking at the two regions separately, the correlation between predicted and observed
OC is close to zero. This means that the model is able to catch the general shape of OC variation in
GDL (low OC in the south vs high OC in the north) but the spatial distribution of OC within each
region is very poorly taken into account. So, despite the high number of sampling points (Figure 2.3,
B.4), modeling OC variation in forest soils seems di�cult, suggesting that important factors controlling
the OC content of forest soils were not taken into account. Analysis of the IFL database indicated
that tree species and age did not in�uence OC content (results not shown). There are however other
factors that were not included in the modeling, such as forest management practices (e.g. fertilization,
harvesting) or land use change history which are known to have an e�ect on OC content in forest [59, 60].
Furthermore, the space between observation on the grid used for collecting IFL data (500x1000 m) were
collected is too coarse to capture variations in OC that can occur at very short range [61]. It is also
possible that variations between sampling units may derive from slight di�erences in sampling depth and
imperfect removal of the ectorganic horizons. Another reason could be the long period of time between
sampling and analysis (approximately 11-12 years) and the question of OC stability in samples. The
map of OC content displays relatively smooth spatial variations over GDL (Figure 3.15), bearing in mind
that predictions holds limited quantitative information, and that the map represents only the average
OC content prevailing under given precipitation-clay content conditions. Standard errors of predictions
are generally low due to the high number of samples (Figure 3.16).

With a percentage of explained deviance close to 0.14, the GAM model is is not good for soils under
vineyard (Table 3.8). The RPD in the test set is equal to 1 (Figure 3.10), meaning that predictions are
as good as if we used the mean OC content in vineyards to predict all the observations. This poor �t
was expected since the exploratory analysis demonstrated that the covariates were very poorly correlated
with OC observations. As a matter of fact, this emphasizes that vineyards are intensively managed so
that soil and environmental conditions does not play a great role in the dynamic and patterns of OC.
Large variation on very small distance can also be related to land reallocation operations that are very
common in vineyards. Finally, this can also be due to bad assignation of the OC observations to speci�c
�elds because of wrong FLIK values as the numbering system changed recently and may have caused
confusion. Due to the very low accuracy achieved by the model, we decided not to produce a map of OC
for this land cover class.

3.3 Map of OC content in GDL

The maps of OC for each land cover were combined into one �nal map displaying the OC distribution of
topsoils in GDL. For vineyards, we assigned the mean value of all observations under vineyard to each
�eld, due to poor prediction accuracy of the GAM model. The resulting map is shown in Figure 3.17 and
the histogram of the predictions in each land cover in the Oesling and Gutland in Figure 3.18. Generally,
the map shows a north to south increase in OC due to the climatic gradient in GDL and OC patterns
linked to the spatial distribution of the di�erent land cover types and clay content. In the Oesling, models
predicted more OC in forest than in grassland and more in grassland than in croplands (Figure 3.18).
In Gutland, however, the map shows more OC in grassland than in forest soils and also in grasslands of
the Oesling (Figure 3.18). Compared to the OC distribution of observed values (Figure 3.1), it is evident
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that predicted OC ranges are lower, indicating that models failed to predict high OC values, a problem
that is especially acute in forest soils.

Figure 3.15: Map of predicted OC content (/ g C kg-1) in forest soils, assuming the whole territory is
covered by forest. Areas in white corresponds to environments where no predictions could be made.
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Figure 3.16: Map of the standard error of predicted OC content (/ g C kg-1) in forest soils.
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Table 3.7: Summary of the full and reduced GAM models for forests

Full model Reduced model
(Intercept) 3.75∗∗∗ 3.72∗∗∗

elevation 2.26∗∗∗ 2.03∗∗∗

eastness 0.00
northness 0.00
slope 1.94∗∗∗

precipitation 0.00
temperature 0.00
clay 0.89∗∗ 0.87∗∗

LS factor 0.00
path length 0.00
x,y:Oesling 2.86∗∗∗ 4.93∗∗∗

x,y:Gutland 8.64∗∗∗ 8.69∗∗∗

AIC 5767.35 5775.60
BIC 5851.26 5859.19
Log Likelihood -2865.09 -2869.29
Deviance 192143.43 194546.53
Deviance explained 0.40 0.39
Dispersion 292.27 295.89
R2 0.39 0.38
GCV score 2896.61 2900.91
Num. obs. 675 675
Num. smooth terms 11 4
***p < 0.001, **p < 0.01, *p < 0.05

Table 3.8: Summary of the full and reduced GAM models for vineyards

Full model Reduced model
(Intercept) 2.83∗∗∗ 2.84∗∗∗

elevation 1.46 3.50∗∗∗

eastness 1.38∗∗

northness 0.00
slope 0.00
precipitation 0.00
temperature 5.47∗∗∗ 3.05∗∗∗

C factor 0.00
clay 5.30∗∗∗ 5.71∗∗∗

Livestock intensity 0.00
LS factor 2.04∗∗

path length 1.85∗∗∗

x,y 8.12∗∗∗ 9.14
AIC 5080.12 5149.63
BIC 5206.30 5256.54
Log Likelihood -2512.44 -2551.41
Deviance 48416.84 54019.13
Deviance explained 0.23 0.14
Dispersion 70.64 78.33
R2 0.20 0.11
GCV score 2563.01 2581.90
Num. obs. 712 712
Num. smooth terms 12 4
***p < 0.001, **p < 0.01, *p < 0.05
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Figure 3.17: Map of predicted OC content (/ g C kg-1) in GDL. Areas in white corresponds to environ-
ments where no predictions could be made.
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Figure 3.18: Histogram of values shown in the map of OC (/ g C kg-1) in GDL soils.
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Chapter 4

Conclusion

Soil is a non-renewable resource providing a range of services to our societies, from plant production
to water �ltering, which human activities are putting under pressure. The soil organic carbon is the
main constituent of the soil organic matter, a key parameter of soil quality through its in�uence on soil
aggregate stability, erosion sensitivity, nutrient and water holding capacity, biological activity and in �ne
its fertility. Soil carbon represents also the main terrestrial carbon pool, and, to this regard, is at the
heart of many contemporary environmental and economical stakes. In Europe, the decline in soil organic
matter due to agriculture intensi�cation has been identi�ed as one of the major threats to the soil. Hence,
the knowledge of OC variation in space and the understanding of its dynamic and controlling variables
is of crucial importance to support and target protection measures.

Here, we presented the results of a study analyzing the spatial distribution of OC in the Grand-Duchy
of Luxembourg in four main land cover classes (cropland, grassland, forest and vineyard), based on an
extensive database compiled from soil tests conducted by the Service de Pédologie at ASTA. Firstly,
indicative or likely OC ranges were de�ned for combination of land cover classes and soil associations, to
provide benchmark levels to which new OC observations can be compared. Then, the spatial variation of
OC in the four land cover classes was modeled through Generalized Additive Models (GAM) using a set
of available covariates representing climatic, pedologic, topographic and anthropic factors that are known
to control accumulation and decomposition of soil organic matter. The GAM models were then applied
to spatially-continuous layers of the covariates to produce four maps OC content for each land cover
that were combined into one �nal map covering as much as 87% of the GDL territory. The resulting
OC maps depict spatial patterns related to covariates selected by the backward stepwise procedure:
climatic gradients and texture for cropland soils, texture and drainage for grasslands, elevation for forest
soils. In vineyards, due to the poor model results, no map was produced. We evaluated the model
prediction accuracy on a random portion of the observations and obtained R2's of 0.66 for cropland, 0.33
for grassland, 0.37 for forest and 0.03 for vineyard soils. The maps of OC content are based on empirical
models and their accurary depends strongly on the number of sampling points and spatial coverage over
the territory. The mapping procedure that we used can be reproduced and is given as R codes in digital
Annex attached to the report (see Annex E). This will allow to rapidly update and improve the OC maps
when new samples will be analyzed by ASTA. One can especially foresee future improvements for the
maps of croplands and grasslands because they both show a relatively low nugget-to-sill ratio, indicating
a strong spatial dependence of the observations which could be leveraged to extrapolate in space. We
should note however that many factors in�uencing soil OC operates at very small scales (e.g. erosion) and
gathering spatial data for some of them is di�cullt (e.g. local management), so that high uncertainties
in regional/national OC assessments is innevitable [62], as observed for instance in forest and vineyard
soils.
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Appendix A

Replicate analysis

To assess temporal discrepancies between OC analyzes due to the use of di�erent instruments and pro-
tocols at ASTA, we conducted a replicate analysis of the samples analyzed with the TruSpec (LECO)
in 2010-2011 and measured them with the Multi EA 4000 (Analytik Jena; Table 2.2). We �rst grouped
samples in two classes with either low pHCaCl2 (pHCaCl2 < 7) or high pHCaCl2 (pHCaCl2 ≥ 7). Then,
50 samples in each class were selected by strati�ed random sampling on the basis of the deciles of the
observed OC distribution (i.e. 5 samples in each decile). Samples were re-analyzed and two outliers with
replicate di�erence ≥ 2 were removed. As indicated in Figure A.1, the error is almost twice as large for
samples with a high pHCaCl2 (coming mostly from vineyards), strongly suggesting that the main source
of error is related to the way Total Inorganic Carbon (TIC) is measured. The Root Mean Square Error
is evaluated at 3.7 g C kg-1 for samples with pHCaCl2 < 7 and 7.7 g C kg-1 pHCaCl2 ≥ 7. Although
such errors might seem relatively large, one should note that this is far from unusual when comparing
OC analyzes retrieved by di�erent reference methods. For instance, Brown et al. [63] conducted an
inter-laboratory comparison of OC analyzes and observed a RMSE of 4.4 g C kg-1for TIC and 7.7 g C
kg-1for TC-TIC (=TOC).

Figure A.1: Replicate analysis of OC measured with a LECO TruSpec and a Multi EA 4000 Analytic
Jena at ASTA. Two outliers with a replicate di�erence ≥ 2 are indicated with circle symbols (o).

46



Appendix B

Observed OC values in the ASTA-SOC

database

Figure B.1: Observed OC values (/ g C kg-1) of samples of the ASTA-SOC database under cropland,
grassland and vineyard land cover as a function of soil texture classes de�ned by ASTA (L = {S+Z}; M
= {L+P+E+A}; OM = G; S = U). Note: texture class was not available for forests.
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Figure B.2: Observed OC values (/ g C kg-1) of samples of the ASTA-SOC database under cropland land
cover.
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Figure B.3: Observed OC values (/ g C kg-1) of samples of the ASTA-SOC database under grassland
land cover.
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Figure B.4: Observed OC values (/ g C kg-1) of samples of the ASTA-SOC database under forest land
cover.
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Figure B.5: Observed OC values (/ g C kg-1) of samples of the ASTA-SOC database under vineyard land
cover.
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Appendix C

Relation between observed OC values

and morphometric variables
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Figure C.1: Scatter plots of observed OC values (/ g C kg-1) of samples of the ASTA-SOC database against morphometric variables in cropland soils.
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Figure C.2: Scatter plots of observed OC values (/ g C kg-1) of samples of the ASTA-SOC database against morphometric variables in grassland soils.
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Figure C.3: Scatter plots of observed OC values (/ g C kg-1) of samples of the ASTA-SOC database against morphometric variables in forest soils.
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Figure C.4: Scatter plots of observed OC values (/ g C kg-1) of samples of the ASTA-SOC database against morphometric variables in vineyard soils.
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Appendix D

Summary of predicted OC values

Soil associations n Min q1 x̄ x̃ q3 Max IQR

Oesling 26748 14.0 26.4 29.9 29.2 32.7 59.8 6.3
Buntsandstein 4373 10.5 15.3 17.4 16.5 17.9 41.5 2.5
Dolomies du Muschelkalk 3746 12.4 19.7 24.3 23.3 28.1 45.7 8.5
Calcaires du Bajocien 310 12.7 15.8 21.5 23.4 26.3 35.9 10.4
Grès de Luxembourg 6038 7.5 10.7 12.3 12.1 13.5 23.0 2.8
Dépôts limoneux sur Grès 7581 7.8 11.9 14.3 13.9 15.4 44.6 3.6
Argiles du Lias inf. et moyen 10333 9.5 14.7 17.5 16.8 20.0 47.4 5.3
Argiles lourdes du Keuper 4629 9.2 13.5 16.8 16.2 19.0 45.8 5.5
Argiles lourdes des schistes bitumineux 1535 11.3 15.0 21.0 21.2 25.7 34.4 10.7
Autres 2312 8.7 15.1 20.6 17.7 26.8 59.5 11.7
all 67605 7.5 14.9 22.1 21.0 28.4 59.8 13.5

Table D.1: Summary statistics of OC predictions (g C kg-1) in Cropland

Soil associations n Min q1 x̄ x̃ q3 Max IQR

Oesling 18775 14.6 34.3 35.1 35.2 36.0 49.9 1.7
Buntsandstein 3619 11.7 22.1 31.8 26.8 37.5 79.9 15.4
Dolomies du Muschelkalk 5299 16.9 29.1 37.5 38.4 44.9 68.8 15.8
Calcaires du Bajocien 250 24.8 37.8 41.9 39.2 47.1 80.0 9.3
Grès de Luxembourg 3574 12.0 18.6 24.5 23.9 28.3 51.7 9.7
Dépôts limoneux sur Grès 8133 12.8 24.6 31.8 32.0 37.7 75.9 13.1
Argiles du Lias inf. et moyen 14451 15.3 37.6 42.4 42.3 47.0 76.4 9.4
Argiles lourdes du Keuper 13664 15.6 37.4 42.0 41.7 47.6 79.9 10.2
Argiles lourdes des schistes bitumineux 3443 29.4 48.6 52.0 53.2 56.8 79.5 8.2
Autres 6889 14.0 33.0 36.9 36.0 41.5 75.2 8.5
all 78097 11.7 33.5 37.8 36.5 43.3 80.0 9.7

Table D.2: Summary statistics of OC predictions (g C kg-1) in Grassland

Soil associations n Min q1 x̄ x̃ q3 Max IQR

Oesling 42055 31.4 44.1 48.4 47.7 51.8 69.2 7.7
Buntsandstein 4901 21.1 26.2 35.2 31.9 42.7 60.5 16.6
Dolomies du Muschelkalk 4673 22.7 30.3 35.4 35.9 40.4 50.1 10.1
Calcaires du Bajocien 3030 23.7 25.6 29.2 26.4 32.5 45.2 6.9
Grès de Luxembourg 21308 17.3 20.4 21.4 21.2 21.9 42.7 1.5
Dépôts limoneux sur Grès 11903 18.7 23.3 26.4 24.7 28.8 47.3 5.5
Argiles du Lias inf. et moyen 9351 20.4 24.1 25.8 25.2 26.4 46.4 2.3
Argiles lourdes du Keuper 8160 19.8 25.0 28.3 26.6 30.4 46.0 5.5
Argiles lourdes des schistes bitumineux 3263 21.3 26.4 28.4 28.1 29.8 40.8 3.4
Autres 6296 19.4 23.9 36.2 37.9 45.7 67.5 21.7
all 114940 17.3 23.8 35.0 30.8 46.0 69.2 22.2

Table D.3: Summary statistics of OC predictions (g C kg-1) in Forest
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Appendix E

R scripts used to generate OC maps

R scripts used to (i) import and format the ASTA database and spatial data, (ii) explore data and (iii)
model OC content and create maps of topsoil OC content can be found in digital annex to this report.
These scripts suppose that you have the necessary data in folders named soil_data and spatial_data. A
short description of their purpose is given in the following list (the order of the �les in the list is important
and corresponds to the �ow of procedures to create maps):

Prepare soil data

1. intro.r: Script run at beginning of each script - Load R packages, import shape�les of the GDL,
create generic functions

2. format_data.r: import and join ASTA xls �les - clean data and carry out multiple checks - save
data for later use

3. format_data_IFL.r: import ASTA and IFL xls �les - join data, clean and save for later use

4. check_analytical_methods: replicate analysis between the di�erent analytical instruments (see
Appendix A)

Prepare spatial (covariate) data

1. aggregate_UF_data.r: import data about livestock intensity by �eld - aggregate it by GDL mu-
nicipalities

2. create_clim_map.r: import climatological data from Lux and neighbouring countries - load a raster
of altitude from SRTM mission - create maps of mean annual temperature and precipitation in GDL

3. create_texture_map.r: import soil pro�le data from ASTA - create maps of clay, silt and sand
content in topsoils by regression kriging

4. get_spatial_data.r import spatial data from various sources - combine data into one raster stack
with the same resolution and extent - save the covariate stack for later use

Join soil and spatial data

1. attach_spatial_data.r : using a mean or majority rule, extract data from the covariate for each
polygon

2. attach_spatial_data_IFL.r : idem but for IFL data (points)

Explore, model and map OC in Lux

1. exploratory_analysis.r: combine data from FLIK's (cropland, grassland, vineyard) and from IFL
(forest) - explore the relationships between OC and the covariates - compute variograms - compute
summary statistics - map OC observation for each land cover
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2. gam_model.r: calibrate a GAM model for each land cover - apply the model to the covariate stack
to predict OC in space - plot the resulting maps

3. gam_model_IFL.r: idem than previously but for IFL data

4. create_OC_map.r: combine maps of each land cover into one - plot the resulting map

Miscellaneous / not used

1. test_kriging.r: test for residual kriging

2. textural_triangle.r: create textural triangle of GDL and plot texture of BDSOL

3. autocrop.r: auto-crop images in the Rapport/img directory
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