

LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG Ministère de l'Agriculture, de l'Alimentation et de la Viticulture

Administration des services techniques de l'agriculture

IMPRESSUM

Ministère de l'Agriculture, de l'Alimentation et de la Viticulture 1, rue de la Congrégation L-1352 Luxembourg

ASTA - Administration des Services Techniques de l'Agriculture 16, Route d'Esch L-1470 Luxembourg

www.landwirtschaft.lu

 $\textbf{Publikation als PDF:} \ www.agriculture.public.lu$

Ausgabe: 06/2025 1. Auflage: 1000 Layout: Claude Frisch

Fotos: ASTA, MA, Anthony Dehez

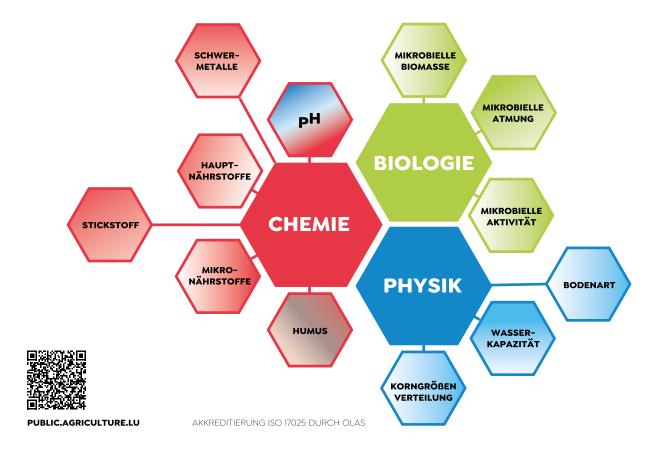
Autoren: Simone Marx, Lionel Leydet, Catherine Delbrouck, Mathieu Steffen, Claude Schummer.

EINLEITUNG

Das **Bodenlabor der ASTA** in Ettelbruck untersucht die Böden aus der Landwirtschaft, dem Weinbau, dem Gartenbau, dem Obstbau, dem Forst, von Naturschutzflächen, aus dem Versuchs- und Forschungswesen und aus privaten Hausgärten auf deren chemischen, physikalischen sowie mikrobiologischen Eigenschaften.

Bodenuntersuchungen liefern wertvolle Informationen über den Versorgungszustand der Böden an pflanzenverfügbaren Nährstoffen um darauf aufbauend eine Düngungsanweisung für eine sachgerechte Düngung zu erstellen.

Mit der Untersuchung der **Grundnährstoffe (Standarduntersuchung)** werden landwirtschaftlich genutzte Böden auf deren **Säuregehalt** (pHCaCl₂) und pflanzenverfügbaren Nährstoffe - Phosphor (P₂O₅), Kalium (K₂O), Magnesium (Mg) und Natrium (Na) - untersucht. Neben den genannten Nährstoffen wird auch die Bodenart per Fingerprobe ermittelt. Weiter kann bei der Grunduntersuchung auch der Gehalt an **organischem Kohlenstoff** zur Bestimmung des **Humusgehaltes** mitbeantragt werden.


Für die Bestimmung der pflanzenverfügbaren Hauptnährstoffe wendet das Bodenlabor seit jeher das deutsche VDLUFA-Extraktionsverfahren CAL (Calcium-Acetat-Lactat) für Phosphor und Kalium bzw. CaCl₂ für Magnesium und Natrium an. Allerdings können auf Wunsch auch andere Extraktionsverfahren angewandt werden um pflanzenverfügbare **Spurenelemente** zu untersuchen (CAT-Auszug, EDTA-Auszug).

Im Rahmen der Förderprämie zum Einstieg in eine nachhaltige und umweltfreundliche Landwirtschaft – Weinbau – Gartenbau (2023-2027), ehemalig Landschaftspflegeprämie (2016-2022), sind sämtliche Flächen des Betriebes alle 5 Jahre auf Grundnährstoffe zu untersuchen und die Düngung nach den hier vorgestellten Richtlinien zu gestalten.

Pro Schlagnummer muss eine Bodenprobe gezogen werden. Flächen, die im Rahmen eines Umweltprogramms einem totalem Düngeverbot unterliegen (Biodiversitätskontrakt) oder Weiden, die wegen ihrer Lage keine mechanische Ausbringung von Düngern erlauben, sind von den Probenahmen ausgenommen.

BUEDEMANALYSEN

ASTA - ETTELBRUCK

Die Standarduntersuchung ist auch die Untersuchung der Wahl für den Hausgarten. Aus den Bestimmungen von Nährstoffgehalten, pH-Wert und der Bodenart lassen sich sogenannte Gehaltsklassen (A bis E) ermitteln, wobei A für einen sehr niedrigen und E für einen sehr hohen Nährstoffgehalt im Boden steht. Der Einsender der Bodenprobe erhält eine entsprechende Düngeempfehlung aufbauend auf den Gehaltsklassen und der Bodenart. Aus der Bestimmung des pH-Wertes ergibt sich der eventuell nötige Kalkbedarf.

Eine gesonderte Untersuchung ist die **Nmin**-Untersuchung. Hierbei wird der Gehalt an mineralischem Nitratstickstoff (N-NO₃) im Boden bestimmt, der über die Saison starken Schwankungen unterliegt. Auf Wunsch kann auch der Gehalt an **Ammonium** (N-NH₄) und mineralischem **Schwefel** (Smin) auf dem gleichen Probematerial untersucht werden. Diese Proben müssen sofort am Tag der Probenahme, gekühlt und schnellstmöglich im Labor abgegeben werden.

Im Rahmen der Schadstoffuntersuchung kann der Boden auf eine eventuelle Belastung mit **Schwermetallen** untersucht werden.

Zu den wichtigsten physikalischen Bodenparametern zählt die Korngrößenverteilung und die trockene Rohdichte.

Der Chlorose-Index IPC wird speziell für Weinbauböden ermittelt. Er ist eine Entscheidungshilfe für die Wahl der Weinbergsböden auf sehr kalkhaltigen Böden. Seit kurzem bietet die Abteilung für Bodenökologie mehrere biologische Untersuchungsparameter zur Bewertung des ökologischen Zustandes des Bodens an.

INHALTSVERZEICHNIS

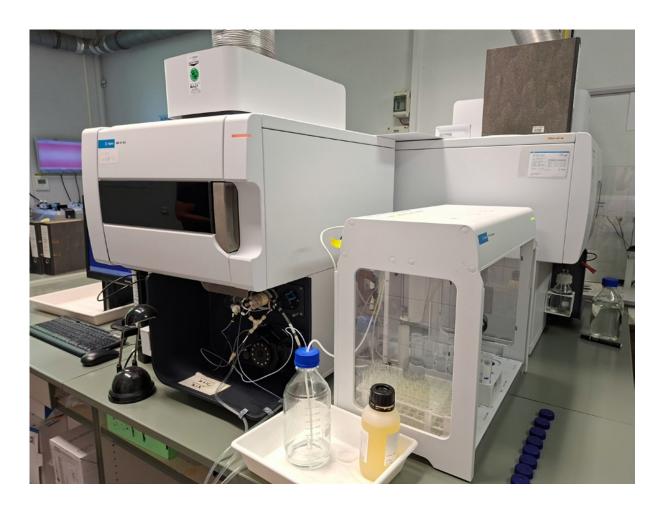
EINLEITUNG	1
INHALTSVERZEICHNIS	3
1. BODENUNTERSUCHUNGEN	5
a. Chemische und physikalische Untersuchungen	6
b. Biologische Untersuchungen	8
2. GRUNDDÜNGUNG IM ACKERBAU UND DAUERGRÜNLAND	9
3. GRUNDDÜNGUNG IM GARTENBAU, OBSTBAU UND BAUMSCHULEN	12
4. GRUNDDÜNGUNG IM WEINBAU	14
5. STICKSTOFFDÜNGUNG	16
a. Mineralischer Nitrat-Stickstoff (Nmin)	16
b. Ausbringungszeiträume für Stickstoffdünger	18
c. N-Bedarfsermittlung und N-Ausnutzung von organischen Düngern	19
6. KALKUNG IM ACKERBAU UND DAUERGRÜNLAND	20
7. GEHALTSKLASSEN FÜR ORGANISCHEN KOHLENSTOFF	24
8. BESTIMMUNG DER BODENART	25
9. PROBENAHME UND ABGABE VON BODENPROBEN	26
REFERENZEN	31
ANHANG	32

1. BODENUNTERSUCHUNGEN

Im Bodenlabor eintreffende Bodenproben werden sofort verarbeitet und registriert. Dabei wird auch die Bodenart (L: leichter sandiger Boden; M: mittlerer Boden; S: schwerer tonreicher Boden; OM: Öslinger mittlerer Boden) per Fingerprobe ermittelt.

Bodenproben zur Standarduntersuchung werden im Trockenschrank bei ≤40°C mindestens 48 Stunden getrocknet und anschließend auf ≤2mm abgesiebt. Bei Probenmaterial aus dem Ösling werden vorhandene Steine durch die Mühle mechanisch aus der Probe entfernt und nur der Feinboden vermahlen.

Nitratuntersuchungensproben (Nmin) werden im Trockenschrank bei ≥95°C mindestens 16 Stunden getrocknet und auf ≤2mm abgesiebt.


Ammonium und Schwefel (Smin) werden auf feldfrischem Boden bestimmt, wobei vorher die Probe auf ≤5mm abgesiebt wird. Zusätzlich wird noch die Trockensubstanz nach ISO 11465 ermittelt.

Bodenproben zur Standarduntersuchung können bei Raumtemperatur und unbegrenzte Zeit nach der Probenahme abgegeben und verarbeitet werden. Der ideale Probezeitraum liegt zwischen September und März.

Nmin und Ammonium müssen feldfrisch, gekühlt und innerhalb 24 Stunden nach Probenahme im Labor abgegeben werden. Der Probetermin richtet sich nach der Saison, idealerweise März-April. Bei Nmin-Proben zur Bestimmung des Reststickstoffgehaltes im Boden liegt der Zeitpunkt im Oktober-November.

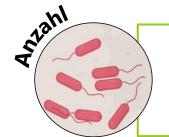
Die so vorbereiteten Proben werden im Labor nach international anerkannten ISO-Normen und/oder VDLUFA-Methoden mittels moderner Spektralphotometrie, Elementaranalyse, Potentiometrie sowie weiteren Analysenverfahren untersucht.

Die Qualitätssicherung im Labor wird gewährleistet durch Akkreditierung nach ISO 17025 durch OLAS.

A. CHEMISCHE UND PHYSIKALISCHE UNTERSUCHUNGEN

	Parameter		ameter Methode		Methode	Ergebn	is	Ab wicklung (Probe)
hung		Во	denart	Fi	ngerprobe	L – leichter Bod M–mittlerer Bo S– schwerer Bo OM – mittlerer Boden (Ösling)	den den	
ntersuc	P ₂ O ₅ *		Phosphor pflanzenverfügbar	A 6.2.1.1 VDLUFA	Calcium-Acetat-Lactat bei pH 4.1 (CAL) (ICP-OES radial)	mg P₂O₅/ 100g (trocken) → Düngungsanwe		
Standarduntersuchung	K₂O *		Kalium pflanzenverfügbar	A 6.2.1.1 VDLUFA	Calcium-Acetat-Lactat bei pH 4.1 (CAL) (ICP-OES radial)	mg K ₂ O/ 100 g l (trocken) → Düngungsanwe	isung	In Routine (Boden probe A)
Star	Mg *		Magnesium pflanzenverfügbar	Int. Methode PEDO-PT-Mg	CaCl ₂ -0,01M (ICP-OES radial)	mg Mg /100 g E (trocken) → Düngungsanwe	eisung	feucht, Raumtem
	Na		Natrium pflanzenverfügbar	A 6.2.1.7 VDLUFA	CaCl ₂ -0,01M (ICP-OES radial)	mg Na/ 100 g B (trocken) → Düngungsanwe	isung	peratur
	pH CaCl	2 *	Potentielle Säure	A 5.1.1 VDLUFA	CaCl ₂ -0,01M M/V 1/2,5 (Potentiometrie)	pH 3 <spannwe 10</spannwe 	eite< pH	
ē	pH H₂O	*	Aktuelle Säure	ISO 10390	H ₂ O dest. V/V 1/5 (Potentiometrie)	pH 3 <spannwe< td=""><td>eite< pH</td><td></td></spannwe<>	eite< pH	
Säure	pH KCl *	ĸ	Potentielle Säure	ISO 10390	KCl 1M V/V 1/5 (Potentiometrie)	pH 3 <spannwe< td=""><td>eite< pH</td><td></td></spannwe<>	eite< pH	
scher	N-NO₃ (Nmin)*		Mineralischer Nitratstickstoff	A 6.1.4.1 VDLUFA	CaCl ₂ -0,01M (Flow Injection Analyzer)	kg N-NO₃/ha (b auf Probentiefe	-	In Routine
Mineralischer Stickstoff	N-NH ₄		Mineralischer Ammonium- stickstoff	A 6.1.4.1 VDLUFA	CaCl ₂ -0,01M (Flow Injection Analyzer)	kg N-NH₄/ha (b auf Probentief€		(Boden probe B)
			+ Wassergehalt *	ISO 11465	Trocknung bei 105 °C	% (m/m)		& gekühlt <
Mineralischer Schwefel	S-SO ₄		Mineralischer Schwefel in Sulfatform (SO ₄)	A 6.1.4.1 VDLUFA	CaCl ₂ -0,01M (ICP-OES radial)	kg S-SO ₄ /ha (be auf Probentiefe	-	24 St. abgeben
Mine	(Smin)		+ Wassergehalt *	ISO 11465	Trocknung bei 105 °C	% (m/m)		
Humus	Corg/ TOC *	C/N	TOC - Gesamter organischer Kohlenstoff	Int. Methode nach ISO 10694	CN-Analyzer	% Corg Humus = 1,72x Corg	C/N =	In Routine (Boden probe A)
丑	${\sf N_{total}}^*$	-,	Gesamtstickstoff	Int. Methode nach ISO 13878	, ,	% N _{total}	TOC Ntotal	,,

eilung	Parameter	ı	Methode	Ergebnis	Ab wicklung (Probe)
Korngrößenverteilung	Ton (<2 µm) Schluff (2 – 50 µm) Sand (50 µm – 2 mm) Bestimmung der Bodenart nach Texturdiagramm	C 2.2.1 VDLUFA	Nasssiebung; Sedimentation und Pipettieren nach Köhn	% Ton (0-2μm) % Schluff (2-50μm) % Sand (50μ-2mm) im Karbonat freien, mineralischen Boden (trocken) Texturdiagramm BE/LU	
Schwermetalle	Éléments-traces métalliques / métaux lourds / Schwermetalle [*] (As, Cd, Cr, Cu, Ni, Pb, Zn)	Int. Methode PEDO-PT-ETM ISO 22036	Extraktion mit Königswasser (ICP-OES axial)	As, Cd, Cr, Cu, Ni, Pb, Zn mg/kg Boden (trocken)	
Schwe	Éléments-traces métalliques / métaux lourds / Schwermetalle (Hg*)	Int. Methode PEDO-PT-Hg	Hg-Analyzer (CV-AAS)	Hg mg/kg Boden (trocken)	Auf Anfrage (Boden
ıte	Pflanzenverfügbare Spurennährstoffe nach CAT (B, Cu, Fe, Mg, Mn, Na, Zn)	A 6.4.1 VDLUFA	CAT-Extraktion: CaCl ₂ -0.01 M + DTPA- 0.002M (ICP-OES radial)	B, Cu, Fe, Mg, Mn, Na, Zn mg/kg Boden (trocken)	probe A)
Spurenelemente	Pflanzenverfügbare Spurennährstoffe im EDTA-Auszug (Cu, Fe, Mn, Zn)	A 7.6.1 VDLUFA	EDTA-0.05M (ICP-OES radial)	Cu, Fe, Mn, Zn mg/kg Boden (trocken)	
ds	Pflanzenverfügbare Haupt- und Spurennährstoffe nach Lakanen- Ervio (P, K, Mg, Ca, Na, Al, Cu, Fe, Mn, Zn)	Methode Wallonien (Belgien)	Ammoniumacetat 0.5M + EDTA 0.025M bei pH 4.65 (ICP-OES radial)	P, K, Mg, Ca, Na, Al, Cu, Fe, Mn, Zn mg/kg Boden (trocken)	
Trocken substanz	Trockensubstanz*	ISO 11465	Trocknung bei 105°C	% (m/m)	In Routine (Boden probe B)
KAK	Kationenaustauschkapazität (KAK) und austauschbare Kationen (Ca, Mg, K, Na)	ISO 23470	Hexammincobalt (III)- chlorid 0.0166M (Spektrophotometer & ICP-OES radial)	meq/100g Boden mg/kg Boden (trocken)	Auf Anfrage (Boden probe A)
Elekt.Leitf ähigkeit	spezifische elektrische Leitfähigkeit	ISO 11265	H ₂ O ultrapur M/V 1/5 (Leitfähigkeitsmesser)	mS/m	Auf Anfrage (Boden probe A)
Aktivkalka nteil et IPC	Calcaire actif Chlorose-Index IPC (Fe- Bestimmung)	NF X 31-106	Ammonium Oxalat 0.1M (Titration & ICP-OES radial)	% IPC = Aktivkalk / Fe ² *10000	Auf Anfrage (Boden probe A)
	r Akkreditierung durch OLAS (ISO 17025) A - Verband Deutscher Landwirtschaftlicher Unt	ersuchungs- und Forsi	chungsanstalten e V	1	


B. BIOLOGISCHE UNTERSUCHUNGEN

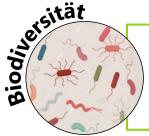
Der Boden ist einer der am dichtesten besiedelten und artenreichsten Biotopen überhaupt. Unzählige Makro- und Mikroorganismen leben in einem gemeinsamen Verbund zusammen und beeinflussen die Bodenqualität sowie die Bodenfruchtbarkeit. Die Gesamtmasse der Bodenorganismen (Biomasse) kann dutzende Tonnen pro Hektar erreichen.

Die Nährstoffverfügbarkeit im Boden und die Vielfalt der darauf wachsenden Pflanzen hängt von

- Anzahl der Organismen
- Biodiversität der Organismen, sowie
- Aktivität der Organismen ab.

Seit kurzem bietet die Abteilung für Bodenökologie mehrere **biologische Untersuchungsparameter** zur Bewertung des ökologischen Zustandes des Bodens an.

Kolonienzählung auf Agarplatten:


Mikrobiologische Methode, um die Anzahl lebensfähiger Mikroorganismen in einer Probe zu bestimmen

Mikrobielle Biomasse:

Messung der Gesamtmasse der lebenden Mikroorganismen die im Boden vorhanden sind

DNA Quantifizierung:

Quantifizierung von mikrobieller DNA

Stoffwechselpotential

Messung der Fähigkeit des Bodens, Stoffe zu verarbeiten und zu transformieren

Cm/Nm Verhältniss

Cm/Nm Verhältnis im Boden bezieht sich auf das Verhältnis zwischen mikrobiellem Kohlenstoff und mikrobiellem Stickstoff. Es ist ein wichtiger Indikator der mikrobiellen Zusammensetzung des Bodens.

Messung der Dehydrogénase-Aktivität

Bestimmung der Dehydrogenase Aktivität als Indikator allgemeiner mikrobieller Aktivität im Boden

Messung der Mikrobiellen Atmung

Bezieht sich auf die Atmung der Mikroorganismen im Boden, die CO₂ freisetzen, ein wichtiger Teil des globalen Kohlenstoffkreislaufs.

2. GRUNDDÜNGUNG IM ACKERBAU UND DAUERGRÜNLAND

Die Düngungsempfehlung für die wichtigsten Nährstoffe (P, K, Mg, Na) erfolgt aufgrund der Untersuchung der leicht verfügbaren Nährstoffgehalte im Boden und deren Einstufung in Gehaltsklassen (A bis E).

Schritt 1: Ermittelte Nährstoffgehalte für Phosphor, Kalium, Magnesium und Natrium und deren jeweilige Gehaltsklassen (A bis E) in Abhängigkeit von Bodenart.

Gehaltsklassen für ACKERBAU und DAUERGRÜNLAND¹

ACKERBAU (0-25 cm)/DAUERGRÜNLAND (0-15 cm) - terres agricoles

mg/100 g trockener Boden nach VDLUFA A 6.2.1.1 (CAL) / 6.2.4.1 (CaCl_a)

mg/100 g trock	ener Boden nach VDLUFA A 6.2.1.1 (CAL) / 6.2	4.1 (CaCl ₂)			
GUTLAND	Mittlerer Boden (M) – sol moyen				
	Gehaltsklasse/classe de fertilité	P ₂ O ₅ ¹	K ₂ O ¹	Mg	Na
	A – sehr niedrig/très faible	0-5	0-5	0-2	0-2
	B - niedrig/faible	6-11	6-11	3-5	3-5
	C – anzustreben/moyen	12-20	12-20	6-10	6-9
	D - hoch/élevé	21-30	21-30	11-15	10-14
	E – sehr hoch/très élevé	≥ 31	≥ 31	≥ 16	≥ 15
	Leichter Boden (L) – sol léger				
	Gehaltsklasse/classe de fertilité	P ₂ O ₅	K₂O	Mg	Na
	A – sehr niedrig	0-5	0-4	0-1	0-2
	B – niedrig	6-11	5-9	2-3	3-4
	C – anzustreben	12-20	10-15	4-6	5-8
	D - hoch	21-30	16-23	7-9	9-12
	E – sehr hoch	≥ 31	≥ 24	≥10	≥ 13
	Schwerer Boden (S) – sol lourd				
	Gehaltsklasse/classe de fertilité	P ₂ O ₅	K ₂ O	Mg	Na
	A – sehr niedrig	0-5	0-6	0-3	0-3
	B – niedrig	6-11	7-13	4-7	4-6
	C – anzustreben	12-20	14-25	8-14	7-10
	D - hoch	21-30	26-38	15-21	11-15
	E - sehr hoch	≥ 31	≥ 39	≥ 22	≥16
ÖSLING	Mittlerer Boden (OM) – sol moyen caillo	ıteux			
	Gehaltsklasse/classe de fertilité	P ₂ O ₅	K₂O	Mg	Na
	A – sehr niedrig	0-7	0-7	0-3	0-3
	B - niedrig	8-14	8-14	4-7	4-7
	C – anzustreben	15-23	15-23	8-12	8-11
	D - hoch	24-35	24-35	13-18	12-17
	E – sehr hoch	≥ 36	≥ 36	≥ 19	≥ 18

¹ Annexe III : Normes de fertilisation pour la fumure de fond (Règlement grand-ducal du 24 août 2016 instituant une prime à l'entretien du paysage et de l'espace naturel [<u>Landschaftspflegeprämie 2016-2022</u>]

Annexe III: Normes de fertilisation pour la fumure de fond (Règlement grand-ducal du 21 novembre 2024 instituant des régimes d'aide pour des engagements en matière d'environnement et de climat) [Förderprämie Umwelt 2023-2027]

Schritt 2: Berechnung des Düngungsbedarfs für die jeweilige Kultur erfolgt in 2 Etappen.

Zuerst: Ermittlung der Standarddüngung für einen Referenzertrag in der C-Klasse, gegebenenfalls angepasst mit Zu-/Abschlägen an die ortübliche, langjährige Ertragserwartung.

Düngungsanweisung für Referenzertrag bzw. Zu-/Abschläge für abweichende Ertragserwartungen in Gehaltsklasse C

	Dofess	P20	O ₅ ¹	K ₂ (י כ	M	gO	Na
KULTUR	Referenz Ertrag	kg/ ha	kg/ 10 dt	kg/ha	kg/ 10 dt	kg/ ha	kg/ 10 dt	kg/ ha
Futter weizen , Brotweizen, Menggetreide (Sommer-, Winter-), Hartweizen	50 dt/ha Korn (inkl.Stroh)	60	12	100	20	25	5	0
Futter gerste , Braugerste (Sommer-, Winter-)	50 dt/ha Korn (inkl.Stroh)	60	12	115	23	25	5	0
Futter roggen , Brotroggen, Triticale (Sommer-, Winter-), Dinkel/ Spelz , sonst. Getreide (Buchweizen, Hirse, Kanariengras)	50 dt/ha Korn (inkl.Stroh)	65	13	120	24	25	5	0
Hafer (Sommer-, Winter-)	50 dt/ha Korn (inkl.Stroh)	65	13	140	28	25	5	0
Getreide/Leguminosen Gemenge	50 dt/ha Korn (inkl.Stroh)	65	13	150	30	25	5	0
Erbsen, Ackerbohnen, sonst. Hülsenfrüchte	40 dt/ha Korn (inkl.Stroh)	68	17	176	44	24	6	0
Raps, Rübsen (Sommer-, Winter-)	30 dt/ha Korn (inkl.Stroh)	84	28	174	58	30	10	0
Lupinen	40 dt/ha Korn (inkl.Stroh)	68/ 52	17/ 13	160	40	24	6	0
Soja	30 dt/ha Korn (inkl.Stroh)	54	17	132	44	24	8	0
Faserhanf	300 dt/ha FM	90	3	318	10,6	138	4,6	0
Hanföl	10 dt/ha Korn (inkl.Stroh)	47	4,7/dt	174	17,4/dt	23	2,3/dt	0
Öllein	20 dt/ha Korn (inkl. Stroh)	30	15	62	31	19	9,5	0
Sonnenblumen	30 dt/ha Korn (inkl.Stroh)	111	37	387	129	42	14	0
Silomais (Futter, EN), Biogasmais	150 dt/ha TS	120/100	8/6,6	240	16	60	4	0
Körnermais	90 dt/ha FM	126/100	14/ 11	243	27	63	7	0
Speise kartoffeln , Pflanzkartoffeln	350 dt/ha FM	102/70	2,9/2,0	245	7	81	2,3	0
Futterrüben	900 dt/ha FM	90	1	540	6	90	1	0
Miscanthus	150 dt/ha FM 200 dt/ha FM	35/ 24	2,3/1,2	135/120	9/ 6	56	3,7	0
Mähweide1 (lx Mahd)	80 dt/ha TS	64	8	152	19	32	4	0
Mähweide2 (2x Mahd), Weide+Mähweide	80 dt/ha TS	72	9	200	25	40	5	0
Weide	80 dt/ha TS	40	5	72	9	24	3	30
Wiese	80 dt/ha TS	80	10	248	31	48	6	0
Gemischtes Feldfutter , Raygrass, Rollrasen, Saatgut-Gräser	80 dt/ha TS	88	11	304	38	48	6	0
Futterleguminosen (Klee, Luzerne), Kleegras , Luzernegras	80 dt/ha TS	64	8	272	34	32	4	0
Stilllegung , Acker ohne Kultur (Wildacker), Brachland	0	0	0	0	0	0	0	0

¹ Annexe III : Normes de fertilisation pour la fumure de fond (Règlement grand-ducal du 24 août 2016 instituant une prime à l'entretien du paysage et de l'espace naturel) [<u>Landschaftspflegeprämie 2016-2022</u>]

Annexe III : Normes de fertilisation pour la fumure de fond (Règlement grand-ducal du 21 novembre 2024 instituant des régimes d'aide pour des engagements en matière d'environnement et de climat) [Förderprämie Umwelt 2023-2027]

Schritt 3: Der unter Schritt 2 ermittelte Bedarf wird durch Zu-/Abschläge an die Bedürfnisse der Gehaltsklasse des Bodens angepasst. Dabei wird die C-Klasse als anzustrebende Gehaltsklasse angesehen.

Zu-/Abschläge zur Standarddüngung (Referenz Gehaltsklasse C) in Bezug auf die einzelnen Gehaltsklassen

kg /ha und Jahr							
Gehaltsklasse/ classe de fertilité	P_2O_5	K ₂ O	MgO				
A sehr niedrig/ très faible	C-Dosis+ 60	C-Dosis+ 80	C-Dosis+ 50				
B niedrig/faible	C-Dosis+ 30	C-Dosis+ 40	C-Dosis + 25				
C anzustreben/ moyen	C-Dosis	C-Dosis	C-Dosis				
D hoch/ élevé	1/2 C-Dosis	1/2 C-Dosis	1/2 C-Dosis				
E sehr hoch/ très élevé	0	0	0				

Bei der Zuordnung der Messergebnisse nach Gehaltsklassen werden die Messunsicherheiten des Labors nicht berücksichtigt.

Im ACKERBAU und im DAUERGRÜNLAND gilt:

- Bei Phosphorgehalten in der E-Klasse ist die mineralische P-Düngung untersagt. Die alleinige Düngung mit landwirtschaftlichen organischen Düngern (Gülle, Mist, Jauche...) bleibt bis zu einer Obergrenze von 170 Norg/ha und Jahr, wenn nicht anders eingeschränkt, in allen Klassen erlaubt bis zu einem Grenzwert von 40 mg P₂O₅/100 g Boden, unabhängig vom ermittelten Düngebedarf.
- Bei Phosphorgehalten in der E-Klasse ab 41 mg P₂O₅/100 g Boden ist neben der mineralischen P-Düngung ebenfalls die organische P-Düngung, auch landwirtschaftlicher Natur, mit Ausnahme über die Beweidung, verboten.
- Der Einsatz von nicht-landwirtschaftlichen organischen Düngern, wie Klärschlamm, ist bei Phosphorgehalten ab der E-Klasse bereits untersagt.
- Die P-Düngungsanweisung versteht sich als jährliche Maximalgabe. Die Bilanzierung der Grundnährstoffe kann sich auf 5 Jahre erstrecken.
- NEU: Förderprämie zum Einstieg in eine nachhaltige und umweltfreundliche Landwirtschaft (540) (2023-2027): die Kalidüngungsanweisungen verstehen sich, entgegen der Phosphordüngung, als Empfehlung und nicht mehr als Obergrenze, d.h. es besteht keine Einschränkung mehr bei gleichzeitiger mineralischer und/oder organischer Kalidüngung. Das gleiche galt bereits für Magnesium und Natrium.

Rechenbeispiel (Anhang 5)

3. GRUNDDÜNGUNG IM GARTENBAU, OBSTBAU UND BAUMSCHULEN

Gehaltsklassen für GARTENBAU, OBSTBAU und BAUMSCHULE¹

GARTENBAU/OBSTBAU/BAUMSCHULE – surfaces horticoles et pépinières (0-25 cm)

mg/100 g trockener Boden nach VDLUFA A 6.2.1.1 (CAL) / 6.2.4.1 (CaCl₂)

	THE BOUGHT HACH VIDEOTA A 0.2.1.1 (CAL) / 0.2.	2			
GUTLAND	Mittlerer Boden (M) – sol moyen				
	Gehaltsklasse/classe de fertilité	P ₂ O ₅ ¹	K ₂ O	Mg	Na
	A – sehr niedrig/très faible	0-5/0-9	0-6	0-3	0-2
	B - niedrig/faible	6-12 / 10-19	7-14	4-7	3-5
	C – anzustreben/moyen	13-24 / 20-29	15-25	8-13	6-9
	D - hoch/élevé	25-34 / 30-39	26-35	14-18	10-14
	E – sehr hoch/très élevé	≥ 35 / ≥ 40	≥ 36	≥ 19	≥ 15
	Leichter Boden (L) – sol léger				
	Gehaltsklasse/classe de fertilité	P ₂ O ₅	K ₂ O	Mg	Na
	A – sehr niedrig	0-5/0-9	0-4	0-2	0-2
	B – niedrig	6-12 / 10-19	5-9	3-4	3-4
	C – anzustreben	13-24 / 20-29	10-15	5-9	5-8
	D - hoch	25-34 / 30-39	16-25	10-12	9-12
	E – sehr hoch	≥ 35 / ≥ 40	≥ 26	≥13	≥13
	Schwerer Boden (S) – sol lourd				
	Gehaltsklasse/classe de fertilité	P ₂ O ₅	K ₂ O	Mg	Na
	A – sehr niedrig	0-5/0-9	0-10	0-5	0-3
	B - niedrig	6-12 / 10-19	11-20	6-10	4-6
	C – anzustreben	13-24 / 20-29	21-30	11-15	7-10
	D - hoch	25-34 / 30-39	31-40	16-25	11-15
	E - sehr hoch	≥ 35 / ≥ 40	≥ 41	≥ 26	≥ 16
ÖSLING	Mittlerer Boden (OM) – sol moyen caillou	uteux			
	Gehaltsklasse/classe de fertilité	P ₂ O ₅	K ₂ O	Mg	Na
	A – sehr niedrig	0-5/0-9	0-6	0-3	0-2
	B - niedrig	6-12 / 10-19	7-14	4-7	3-5
	C – anzustreben	13-24 / 20-29	15-25	8-13	6-9
	D - hoch	25-34 / 30-39	26-35	14-18	10-14
	E - sehr hoch	≥ 35 / ≥ 40	≥ 36	≥ 19	≥ 15

¹ Annexe I : Exigences minimales pour la fumure au phosphore – volet terres horticoles (Règlement grand-ducal du 24 août 2016 instituant une prime à l'entretien du paysage et de l'espace naturel) [<u>Landschaftspflegeprämie 2016-2022</u>]

Annexe I: Exigences minimales pour la fumure du phosphore – volet surfaces horticoles et pépinières (Règlement grandducal du 21 novembre 2024 instituant des régimes d'aide pour des engagements en matière d'environnement et de climat) [Förderprämie Umwelt 2023-2027]

Düngungsanweisung für GARTENBAU, OBSTBAU und BAUMSCHULE

KULTUR	Nährstoff	Düngungsanwe	isung nach Ge	haltsklasse (kg	ı/ha)	
OBSTBAU		A	В	С	D	E
Obstbau	P ₂ O ₅ 1	100	75	50	25	0
Erwerbsobstbau	K ₂ O	150	115	80	40	0
	MgO	50	40	30	20	0
	Na	0	0	0	0	0
OBSTBAU		Α	В	С	D	E
Beerenfrüchte, Obstgehölze	P ₂ O ₅ 1	100	75	50	25	0
	K ₂ O	240	180	120	75	0
	MgO	135	105	90	60	0
	Na	0	0	0	0	0
BAUMSCHULE	Α	В	С	D	E	E
Baumschule,	P ₂ O ₅ 1	100	75	50	25	0
Forstbaumschule	K ₂ O	150	115	80	40	0
	MgO	50	40	30	20	0
	Na	0	0	0	0	0
GARTENBAU (max.2x/Jahr)	A	В	С	D	E	E
Freilandgemüse	P ₂ O ₅ 1	140	105	70	35	0
(Gärtnerei, Landbau)	K ₂ O	270	210	150	75	0
	MgO	150	120	90	45	0
	Na	0	0	0	0	0

Im GARTENBAU, OBSTBAU und BAUMSCHULEN gilt:

- Landschaftspflegeprämie 2016-2022: Bei Phosphorgehalten in der E-Klasse ist die mineralische P-Düngung untersagt. Die alleinige Düngung mit landwirtschaftlichen organischen Düngern (Gülle, Mist, Jauche) oder pflanzlicher Herkunft (Grünschnitt, Kompost) bleibt bis zu einer Obergrenze von 170 Norg/ha und Jahr, wenn nicht anders eingeschränkt, erlaubt unter der Bedingung, dass der Humusgehalt <= 4 % Corg (L-Boden), <=5 % (M- und S-Boden), <=6 % (OM-Boden) liegt.
- NEU: Förderprämie zum Einstieg in eine nachhaltige und umweltfreundliche Landwirtschaft/ Baumschulen (540, 541): 2023-2027: im OBSTBAU, GEMÜSEBAU, BAUMSCHULEN ist die P-Düngung mit organischen Düngern, allein ausgebracht, erlaubt bis <u>6 % Corg</u> (10,3 % Humus), unabhängig vom Phosphorgehalt des Bodens und der Bodenart.
- Im GARTENBAU, OBSTBAU und in BAUMSCHULEN sind die Düngungsanweisungen nicht ertragsgebunden, sondern verstehen sich als jährliche Obermengen und können über 5 Jahre bilanziert werden.

4. GRUNDDÜNGUNG IM WEINBAU

Gehaltsklassen im WEINBAU

WEINBAU – terres viticoles, vignobles (0-30 cm, 30-60 cm) mg/100 g trockener Boden nach VDLUFA A 6.2.1.1 (CAL) / 6.2.4.1 (CaCl₂)

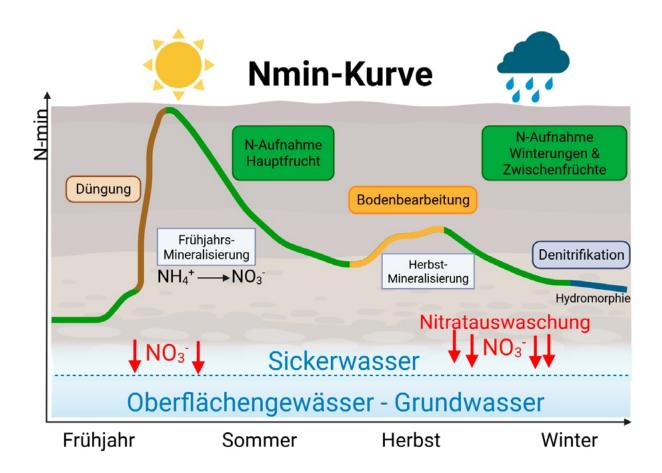
GUTLAND	Mittlerer Boden (M) – sol moyen				
	Gehaltsklasse/classe de fertilité	P ₂ O ₅ ¹	K ₂ O	Mg	Na
	A – sehr niedrig/très faible	0-5	0-7	0-4	0-2
	B - niedrig/faible	6-11	8-14	5-9	3-5
	C – anzustreben/moyen	12-20	15-25	10-15	6-9
	D - hoch/élevé	21-30	26-38	16-22	10-14
	E – sehr hoch/très élevé	≥ 31	≥ 39	≥ 23	≥ 15
	Leichter Boden (L) – sol léger				
	Gehaltsklasse/classe de fertilité	P ₂ O ₅	K ₂ O	Mg	Na
	A – sehr niedrig	0-5	0-4	0-4	0-2
	B - niedrig	6-11	5-9	5-9	3-4
	C – anzustreben	12-20	10-20	10-15	5-8
	D - hoch	21-30	21-30	16-22	9-12
	E - sehr hoch	≥ 31	≥ 31	≥ 23	≥ 13
	Schwerer Boden (S) – sol lourd				
	Gehaltsklasse/classe de fertilité	P ₂ O ₅	K ₂ O	Mg	Na
	A - sehr niedrig	0-5	0-9	0-4	0-3
	B – niedrig	6-11	10-19	5-9	4-6
	C – anzustreben	12-20	20-30	10-15	7-10
	D - hoch	21-30	31-45	16-22	11-15
	E - sehr hoch	≥ 31	≥ 46	≥ 23	≥16
ÖSLING	Mittlerer Boden (OM) – sol moyen caillou	teux			
	Gehaltsklasse/classe de fertilité	P ₂ O ₅	K ₂ O	Mg	Na
	A - sehr niedrig	0-5	0-7	0-4	0-3
	B - niedrig	6-11	8-14	5-9	4-7
	C – anzustreben	12-20	15-25	10-15	8-11
	D - hoch	21-30	26-38	16-22	12-17
	E - sehr hoch	≥ 31	≥ 39	≥ 23	≥ 18

Annexe I: Exigences minimales pour la fumure au phosphore - volet terres horticoles (Règlement grand-ducal du 24 août 2016 instituant une prime à l'entretien du paysage et de l'espace naturel) [Landschaftspflegeprämie 2016-2022]

Annexe I: Exigences minimales pour la fumure du phosphore - volet surfaces horticoles et pépinières (Règlement grandducal du 21 novembre 2024 instituant des régimes d'aide pour des engagements en matière d'environnement et de climat) [Förderprämie Umwelt 2023-2027]

Düngungsanweisung im WEINBAU

KULTUR	Nährstoff	Düngungsanweisung nach Gehaltsklasse (kg/ha)				
WEINBAU Oberboden (S)		A	В	С	D	E
Weinbau (140hl/ha),	P ₂ O ₅ 1	80	60	40	20	0
Tafeltrauben	K ₂ O	213	160	106	53	0
Weinrebe Oberboden (S)	MgO	80	60	40	20	0
	Na	0	0	0	0	0
WEINBAU Oberboden (M, L)		Α	В	С	D	E
Weinbau (140hl/ha), Tafeltrauben	P ₂ O ₅ 1	80	60	40	20	0
Weinrebe Oberboden (M, L)	K ₂ O	186	140	93	47	0
	MgO	80	60	40	20	0
	Na	0	0	0	0	0
WEINBAU Unterboden (S)	A	В	С	D	E	E
Weinbau (140hl/ha),	P ₂ O ₅ 1	80	60	40	0	0
Tafeltrauben	K ₂ O	213	160	106	53	0
Weinrebe Oberboden (S)	MgO	80	60	40	20	0
	Na	0	0	0	0	0
WEINBAU Unterboden (M, L)	A	В	С	D	E	E
Weinbau (140hl/ha),	P ₂ O ₅ 1	80	60	40	0	0
Tafeltrauben	K ₂ O	186	140	93	47	0
Weinrebe Oberboden (M, L)	MgO	80	60	40	20	0
	Na	0	0	0	0	0


Im WEINBAU gilt:

- Landschaftspflegeprämie 2016-2022: Bei Phosphorgehalten in der E-Klasse ist die mineralische P-Düngung untersagt. Die alleinige P-Düngung mit landwirtschaftlichen organischen Düngern (Gülle, Mist, Jauche) oder pflanzlicher Herkunft (Grünschnitt, Kompost) bleibt bis zu einer Obergrenze von 170 Norg/ha und Jahr, wenn nicht anders eingeschränkt, erlaubt unter der Bedingung, dass der Humusgehalt < = 2 % Corg (3,44 % Humus), unabhängig der Bodenart, liegt.
- NEU: Förderprämie zum Einstieg in einen nachhaltigen und umweltfreundlichen Weinbau (542): 2023-2027: organischer Dünger, allein ausgebracht, erlaubt bis 4 % Corg (6,9 % Humus) unabhängig vom Phosphorgehalt des Bodens und der Bodenart.
- Im WEINBAU sind die Düngungsanweisungen nicht ertragsgebunden, sondern verstehen sich als jährliche Obermengen und können über 5 Jahre bilanziert werden.
- Lediglich die Untersuchung der oberen **Bodenschicht (0-30 cm)** ist eine Mindestanforderung der Landschaftspflegeprämie/Förderprämie. Die Beprobung des Unterbodens (30-60 cm) ist fakultativ. Liegen aber Analysen des Unterbodens vor, können die maximalen Düngungsempfehlungen des Ober- und Unterbodens summiert werden.

5. STICKSTOFFDÜNGUNG

A. MINERALISCHER NITRAT-STICKSTOFF (NMIN)

Der Gehalt an mineralischem Nitratstickstoff (N-NO₃) wird bei der Grunduntersuchung nicht mitbestimmt, da der Nitratgehalt des Bodens starken saisonalen Schwankungen unterliegt und gezielt in der Saison beprobt werden.

Hierfür benötigt man eine gesonderte feldfrische Probe. Die Untersuchung kann sowohl für die Bestimmung einer ergänzenden mineralischen N-Düngung in der Saison (Nachdüngung zu Mais im 6-Blattstadium) sowie für die Bestimmung von auswaschungsgefährdetem Reststickstoff nach der Ernte genutzt werden.

Das Ergebnis wird in kg N-NO₃/ha angegeben, bezogen auf die beprobte Tiefe, die Bodenart und den Steingehalt.

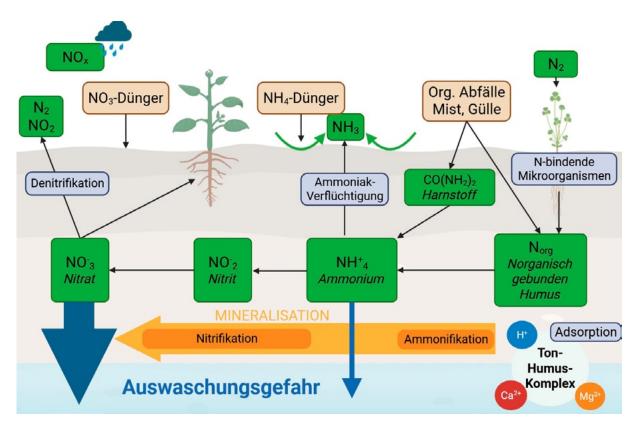
Das Ergebnis der Nmin-Probe gilt jeweils nur für den Zeitraum der Probenahme und muss nicht unbedingt in den Wochen danach noch seine Gültigkeit haben, da Nitrat von den Pflanzen entweder aufgenommen oder durch Niederschläge ausgewaschen werden kann.

Die in dem Bodenextrakt gemessene Konzentration an Nitratstickstoff (mg $N-NO_3/I$) wird mit der Beprobungstiefe sowie der Trockenrohdichte der Bodenart (M, L, S, OM) multipliziert, gegebenenfalls mit dem Steingehalt korrigiert, und in kg N/ha angegeben.

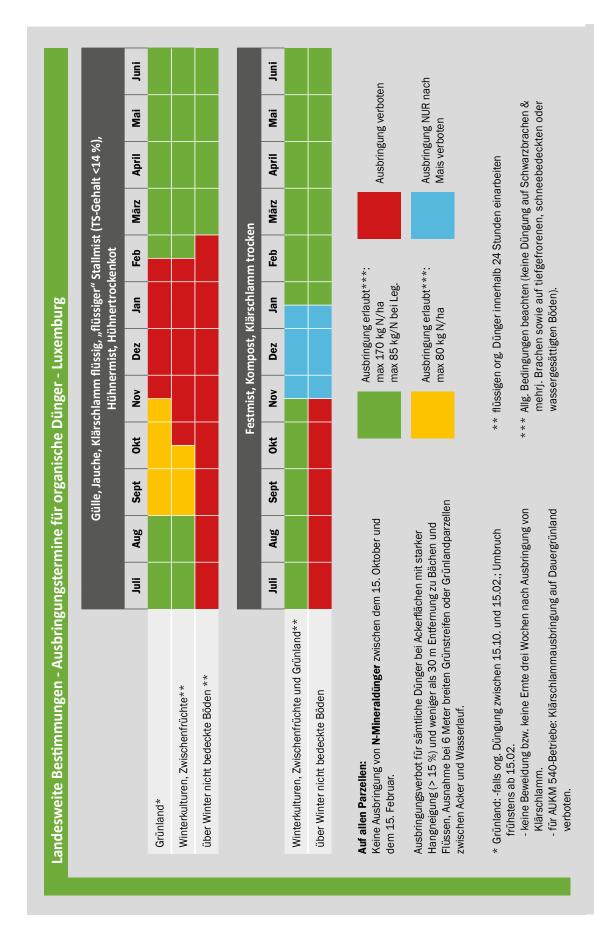
 $Nmin = Konzentration_{N-NO3} x [Beprobungstiefe x Trockenrohdichte_{Bodenart} x (1 - Steingehalt)]$

Trockenrohdichte und Steingehalt nach Bodenart

Bodenart	Trockenrohdichte (g/cm3)	Steingehalt (% vol.)
Gutland – L	1,50	0
Gutland – M	1,45	0
Gutland – S	1,35	0
Oesling - OM	1,25	18


Umrechnungsfaktoren der Nitratkonzentration nach Beprobungstiefe und Bodenart

Beprobungstiefe	Bodenart L	Bodenart M	Bodenart S	Bodenart OM
30cm	45	43,5	40,5	30,75
25cm	37,5	36,25	33,75	25,625
20cm	30	29	27	20,5
15cm	22,5	21,75	20,25	15,375
10cm	15	14,5	13,5	10,25


Rechenbeispiel: Ein Nmin-Gehalt im M-Boden von 50 kg N/ha, beprobt und berechnet auf 25 cm Tiefe, ergibt einen Wert von 40 kg N/ha in der Tiefe 0-20 cm, unter der Bedingung, dass die Nitratkonzentration in der gesamten Bodenkrume homogen ist.

40 kgN/ha = (50 kgN/ha / 36,25) * 29

Stickstoffkreislauf

B. AUSBRINGUNGSZEITRÄUME FÜR STICKSTOFFDÜNGER

Quelle: Convis

C. N-BEDARFSERMITTLUNG UND N-AUSNUTZUNG VON ORGANISCHEN DÜNGERN

Règlement grand-ducal du 24 novembre 2000 concernant l'utilisation de fertilisants azotés dans l'agriculture

Annexe I - Quantités maximales de fumure azotée en application de l'article 6

Culture	Récolte estimée (dt/ha)	Facteur de correction en fonction du rendement (kg N/δdt/ha)	Fumure azotée organique maximale (kg N/ha/an)	Fumure azotée minérale maximale (kg N/ha/an) en cas d'absence de fertilisation organique
Céréales	50 dt/ha²)	2.5	170	160
Colza	30 dt/ha²)	5.0	170	180
Cultures protéagineuses	50 dt/ha²)		851)	301)
Pommes de terre	350 dt/ha²)	4.0	170	170
Betteraves fourragères	900 dt/ha²)	3.0	170	235
Maïs	150 dt/ha³)	1.4	170	190
Prairies et Pâturages	90 dt/ha³)	2.7	170	260
Prairies temporaires	110 dt/ha³)	3.0	170	300

^{1) =}Démarrage de culture

Annexe II - Coefficients de disponibilité azotée des fertilisants organiques

Lisier bovin, fumier mou et boues d'épuration (en % de l'azote total)

	colza, cultures dérobées	céréales d'hiver	cultures estivales	prairies et pâturages	autres cultures
été/automne	35	25	sans objet	35	35
printemps	40	30	50	40	40

Lisier porcin, purin et digestat (en % de l'azote total)

	colza, cultures dérobées	céréales d'hiver	cultures estivales	prairies et pâturages	autres cultures
été/automne	40	30	sans objet	40	40
printemps	50	40	60	50	50

Fertilisants organiques solides (en % de l'azote total)

	maïs	autres cultures
Fumier autre que le fumier mou, le fumier de volaille et les fientes de volaille	50	30
Fumier de volaille	50	50
Boues d'épuration solides	50	30
Compost	30	15
Fumier et fientes de volaille	50	50

(Rechenbeispiel Anhang 5)

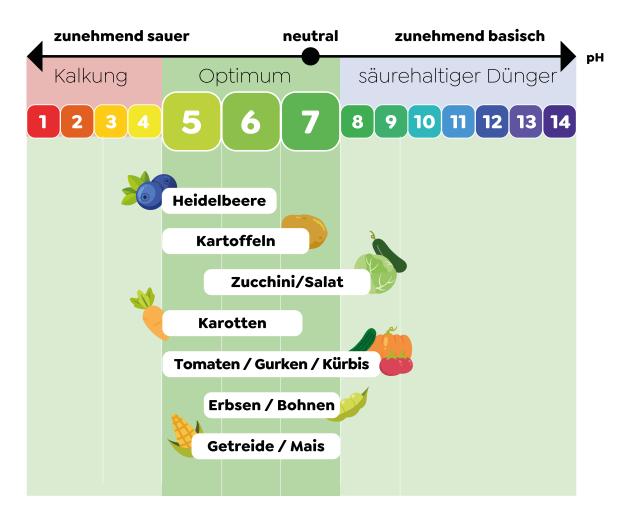
^{2) =}matière fraîche

^{3) =}matière sèche

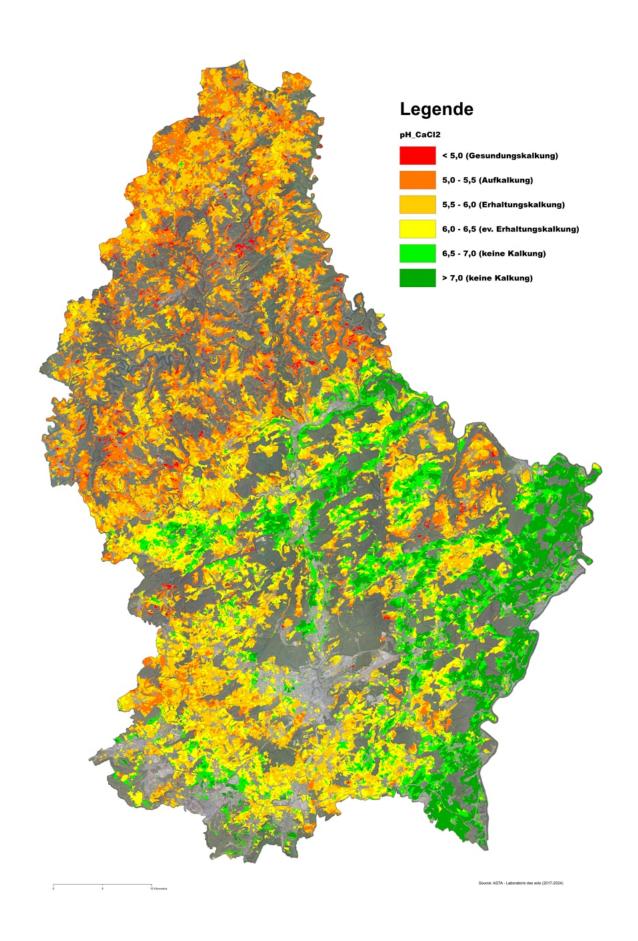
6. KALKUNG IM ACKERBAU UND DAUERGRÜNLAND

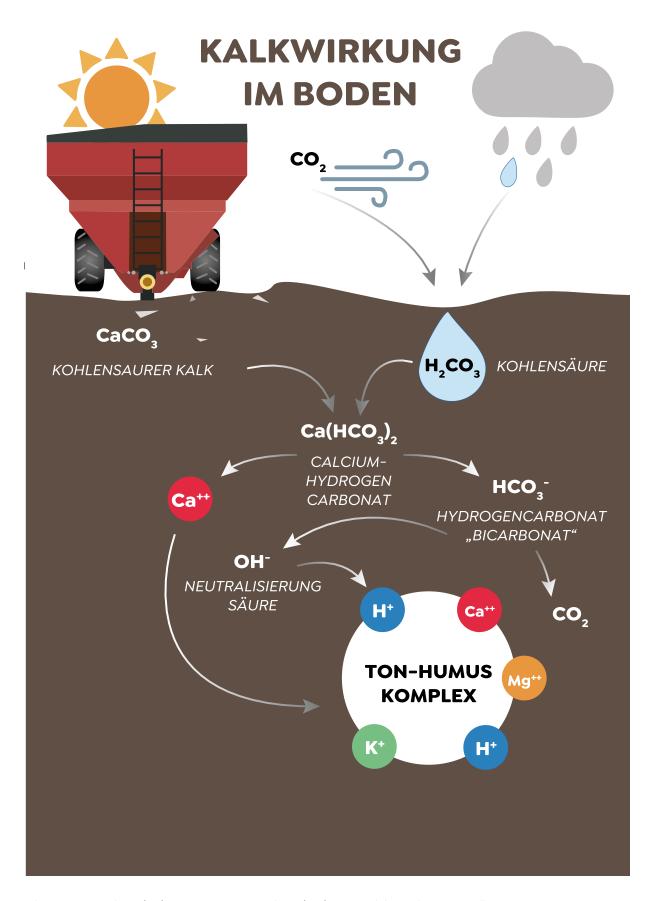
Kalkungsanweisung im Ackerland und Dauergrünland aufgrund von pH CaCl,¹

Gehaltsklasse	e/classe de fertilité	Ackerland pH CaCl ₂	Kalkbedarf in t CaO Äquivalent/ 5 Jahre	Dauergrünland pH CaCl ₂	Kalkbedarf in t CaO-Äquivalent/ 5 Jahre	Max. Einzelgabe in t CaO/ha.Jahr
GUTLAND	Leichter Boden (L) -	sol léger				
	A – sehr niedrig	≤ 4,8	5 - 6	≤4,3	2 - 3,5	
	B - niedrig	4,9 - 5,4	2 - 4	4,4 - 4,9	1,5 - 2	
	C – anzustreben	5,5 - 6,0	1 - 2	5,0 - 5,5	0 - 0,5	1,5
	D - hoch/élevé	6,1 - 6,5	0	5,6 - 6,1	0	
	E - sehr hoch	≥ 6,6	0	≥ 6,2	0	
	Mittlerer Boden (M)	– sol moyen				
	A - sehr niedrig	≤5,2	7,5 - 9	≤ 4,7	3,5 - 5	
	B - niedrig	5,3 - 5,9	3,5 - 5,5	4,8 - 5,5	1,5 - 2,5	
	C – anzustreben	6,0 - 6,5	1,5 - 2,5	5,6 - 5,9	0 - 0,5	2,5
	D - hoch	6,6 - 7,1	0	6,0 - 6,8	0	
	E – sehr hoch	≥ 7,2	0	≥ 6,9	0	
	Schwerer Boden (S)	– sol lourd				
	A - sehr niedrig	≤ 5,3	9 - 11	≤ 4,7	4,5 - 5,5	
	B - niedrig	5,4 - 6,3	2 - 6	4,8 - 5,6	1,5 - 3	
	C – anzustreben	6,4 - 7,2	0 - 2	5,7 - 6,1	0 - 1	3
	D - hoch	7,3 - 7,7	0	6,2 - 7,0	0	
	E – sehr hoch	≥ 7,8	0	≥ 7,1	0	
ÖSLING	Mittlerer Boden (OA	1) – sol moye	n caillouteux			
	A - sehr niedrig	≤ 4,9	5,5 - 7,5	≤ 4,3	2 - 3,5	
	B - niedrig	5,0 - 5,5	2,5 - 5	4,4 - 4,9	1,5 - 2,5	
	C – anzustreben	5,6 - 6,3	1 - 2	5,0 - 5,7	0,5 - 1	2
	D - hoch	6,4 - 7,0	0	5,8 - 6,1	0	
	E – sehr hoch	≥ 7,1	0	≥ 6,2	0	
Gehaltsklasse	Α	В	С		D	E


Gehaltsklasse	Α	В	С	D	E
Kalkung	Gesundungskalkung	Aufkalkung	Erhaltungskalkung	Keine Kalkung	

Neutralisationswert (NW) = Valeur neutralisante (VN) = % CaO – Äquivalent. Bei einem Kalkungsprodukt mit einem Neutralisationswert von 50 (oder 50 % CaO – Äquivalent) bedarf es 2 t Produkt um den Kalkbedarf von 1 t CaO-Äquivalent zu decken.


¹ pH CaCl₂ nach VDLUFA A 5.1.1 (0,01M; M/V 1/2,5)



OPTIMALER pH FÜR PFLANZENWACHSTUM

PH KARTE LANDWIRTSCHAFTLICHER BÖDEN

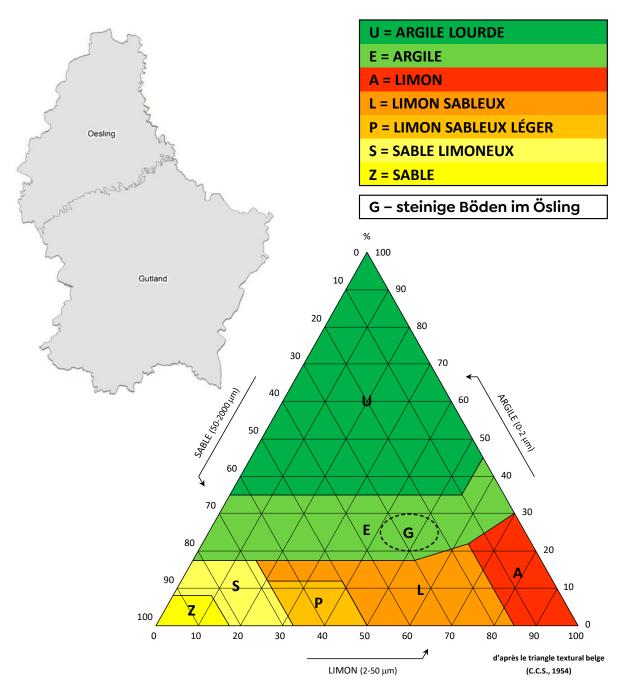
Nicht das Calcium (Ca) bzw. das Magnesium (Mg) neutralisiert die Bodensäure, sondern das dazugehörende Carbonat (CO₃²⁻).

7. GEHALTSKLASSEN FÜR ORGANISCHEN KOHLENSTOFF

Gehaltsklassen für organischen Kohlenstoff im Ackerland, Dauergrünland und Weinbau aufgrund von Corg - Gehalten¹ (% Corg * 1,72 = % Humusgehalt)

Corg-Gehalte (% Masse) in ACKERBAU, DAUERGRUNLAND und WEINBAU

GUTLAND	Mittlerer Boden (M) – sol moyen			
	Gehaltsklasse	ACKER (0-25cm)	DAUERGRÜNLAND (0-15cm)	WEINBAU (0-30cm)
	A - sehr niedrig	0,0 - 1,3	0,0 - 2,4	0,0 - 1,2
	B - niedrig	1,4 - 1,5	2,5 - 2,9	1,3 - 1,7
	C – anzustreben	1,6 - 1,8	3,0 - 3,5	1,8 – 1,9
	D - hoch	1,9 - 2,1	3,6 - 4,4	2,0 - 2,6
	E – sehr hoch	≥ 2,2	≥ 4,5	≥ 2,7
	Leichter Boden (L) – sol léger			
	Gehaltsklasse	ACKER (0-25cm)	DAUERGRÜNLAND (0-15cm)	WEINBAU (0-30cm)
	A - sehr niedrig	0,0 - 0,8	0,0 - 1,2	/
	B - niedrig	0,9 - 1,0	1,3 - 1,4	/
	C – anzustreben	1,1 - 1,2	1,5 - 1,7	/
	D - hoch	1,3 - 1,4	1,8 - 1,9	/
	E - sehr hoch	≥ 1,5	≥ 2,0	/
	Schwerer Boden (S) – sol lourd			
	Gehaltsklasse	ACKER (0-25cm)	DAUERGRÜNLAND (0-15cm)	WEINBAU (0-30cm)
	A - sehr niedrig	0,0 - 1,6	0,0 - 3,3	0,0 - 1,2
	B - niedrig	1,7 - 1,8	3,4 - 3,8	1,3 - 1,5
	C – anzustreben	1,9 – 2,1	3,9 - 4,3	1,6 - 1,9
	D - hoch	2,2 - 2,4	4,4 - 5,0	2,0 - 2,4
	E – sehr hoch	≥ 2,5	≥ 5,1	≥ 2,5
ÖSLING	Mittlerer Boden (OM) – sol moyen caillout	eux		
	Gehaltsklasse	ACKER (0-25cm)	DAUERGRÜNLAND (0-15cm)	WEINBAU (0-30cm)
	A – sehr niedrig	0,0 - 2,4	0,0 - 2,9	/
	B - niedrig	2,5 - 2,8	3,0 - 3,4	/
	C – anzustreben	2,9 - 3,1	3,5 - 3,8	/
	D - hoch	3,2 - 3,6	3,9 - 4,5	/
	E - sehr hoch	≥ 3,7	≥ 4,6	/


¹ Corg-Gesamt organischer Kohlenstoff; Bestimmung durch trockene Verbrennung mittels CN-Analyzer und Dekarbonatisierung; interne Methode in Anlehnung an die Norm ISO 10694

8. BESTIMMUNG DER BODENART

Bodenart mittels Fingerprobe und äquivalente Texturklassen im Texturdiagramm

Bodenart (mittels Fingerprobe)	Region	Texturklasse nach LU-Texturdiagramm
L (leicht) – sol léger	Gutland	Z (sable), S (sable limoneux)
M (mittel) – sol moyen	Gutland	L (limon sableux), P (limon sableux léger), A (limon), E (argile)
S (schwer) – sol lourd	Gutland	U (argile lourde)
OM (mittel) – sol moyen caillouteux	Oesling	G (argile limono-caillouteuse)

Texturdiagramm (LU) mit Texturklassen mittels Korngrößenverteilung

9. PROBENAHME UND ABGABE VON BODENPROBEN

Probenahme im Feld 1

Proben mit professionellem, dünnen Bodenstecher ziehen (Bsp. Eijkelkamp-Bohrer, Ø max. 13 mm).

Privatgarten: Spatentiefe Probenahme

Mindestanzahl von Einstichen:

Ackerland, Weinbau, Gartenbau: 5 Einstiche/ha
Dauergrünland: 8 Einstiche/ha

Minimum: 15-25 Einstiche/Probe für ausreichende Probenmenge zu gewährleisten

Probetiefe:

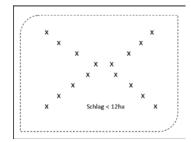
0 - 15 cm im Dauergrünland
0 - 25 cm im Feldfutter
0 - 25 cm im Ackerland
0 - 30 cm (30 - 60 cm optional) im Weinbau (Oberboden, Unterboden)
0 - 25 cm im Gartenbau, Baumschulen, Obstanlagen

Bodenmenge:

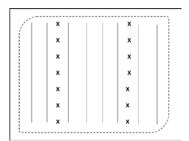
bei feuchter Erde 500-1000 g Boden. Proben kleiner als 150 g und größer als 1,5 kg können im ASTA-Labor nicht angenommen werden.

Parameterumfang:

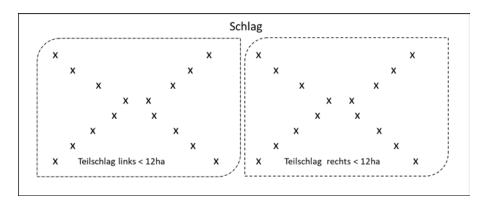
- Standarduntersuchung: pH, Phosphor, Kali, Magnesium, Natrium
- Optional: Humus (Corg, Ntotal, C/N)


Die Probe sollte **ungeteilt** und **vollständig** im Labor ankommen. Falls die Größe der Parzelle (Bsp. > 5 ha) aber zu viel Boden ergibt, sorgfältig mischen und nur im Notfall eine Teilprobe für die Analyse abtrennen. Alternativ kann bei homogenen Bodenbedingungen eine Teilparzelle stellvertretend beprobt werden.

NEU in der Förderprämie 540 ab 2023: Ab 12 ha Parzellengröße muss <u>spätestens im 3. Jahr der Teilnahme</u> auf <u>Ackerflächen</u> je 12 ha-Einheit eine getrennte Bodenprobe abgegeben werden. Dies trifft nicht für das Dauergrünland zu.


¹ Annexe II : Exigences pour le prélèvement d'échantillons de terre (Règlement grand-ducal du 24 août 2016 instituant une prime à l'entretien du paysage et de l'espace naturel) [Landschaftspflegeprämie 2016-2022]

Annexe II: Exigences pour le prélèvement d'échantillons de terre (Règlement grand-ducal du 21 novembre 2024 instituant des régimes d'aide pour des engagements en matière d'environnement et de climat) [Förderprämie Umwelt 2023-2027])


Ackerschlag < 12ha

Weinberg

Ackerschlag > 12 ha

Auf dem Fragebogen: Schlagnummern für sämtliche Teilflächen gleichhalten und Bodenproben anhand von Schlagname (Bsp. Teilschlag links, Teilschlag rechts) unterscheiden.

Folgendes beachten

- Pro prämienfähige Fläche d.h. pro Schlagnummer: 1 Bodenprobe
- alle Bodenproben, älter als 5 Jahre neu ziehen
- Bei Neuzugängen im Betrieb: Bodenprobe spätestens im 3. Jahr ziehen
- Fragebogen zur Bodenanalyse ausfüllen (download) unter
 - https://agriculture.public.lu/de/formulare/pflanzen-und-boeden/ fragebogen-bodenanalyse-landwirtschaft.html (Landwirtschaft und Gartenbau)
 - https://agriculture.public.lu/de/formulare/pflanzen-und-boeden/fragebogen-bodenanalyse-weinbau.html (Weinbau)
- Gleiche Schlagnummern verwenden wie im Flächenantrag und im Parzellenpass/Düngeplan
- Angaben zur Probe auf dem Fragebogen zur Bodenanalyse:
 - fortlaufende Probennummer, Schlagname, Schlagnummer
 - FLIK-Nummer(n) gegebenenfalls auch Weinbergsnummer
 - Kultur 2024/2025 angeben unter "Nächste Kultur" auf Fragebogen zur Bodenanalyse

Bsp. Acker: Winterweizen, Winterraps, Sommergerste, Silomaïs, Feldfutter, Freilandgemüse...

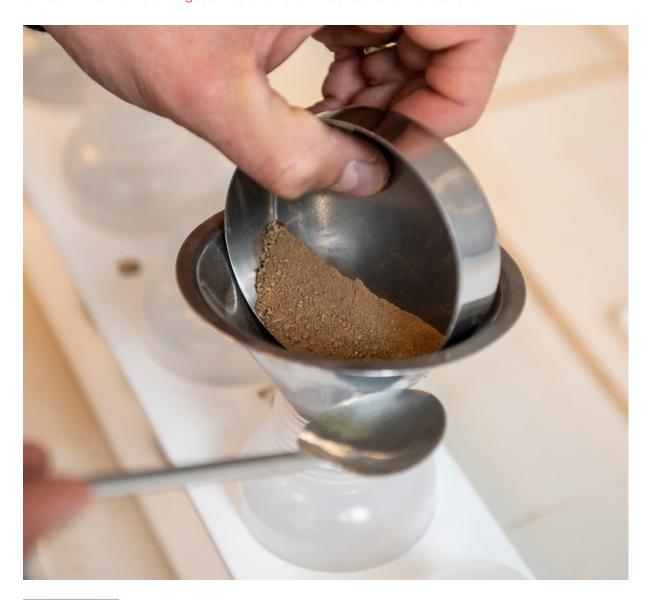
Dauergrünland: Weide, Mähweide 1, Mähweide 2, Mähweide 3/Wiese...

Weinbau: Weinberg Oberboden, Weinberg Unterboden...

Privatgarten: Gemüse, Rasen, Sträucher...

- Proben nicht nach rezenter breitflächiger organischer Düngung ziehen; Probenahme möglich zwischen den Ablagestreifen bei bodennaher Gülleausbringung
- · Tüten nicht fest verschließen!
- <u>Tüten nur mit einer fortlaufenden Nummer</u> und nicht mit der Schlagnummer beschriften!
 Diese Nummer muss mit der fortlaufenden Nummer auf dem Fragebogen zur Bodenanalyse übereinstimmen!

Nmin Bodenproben (Nmin-Methode - VDLUFA A 6.1.4.1)


Nmin-Proben werden im Ackerland auf 0-25 cm gezogen und müssen frisch bzw. gekühlt (während der Saison) im Bodenlabor innerhalb von 24 Stunden abgegeben werden. Proben dürfen nur im Notfall eingefroren werden und müssen dann innerhalb von einer Woche im gefrorenen Zustand im Labor abgegeben werden. Bei Nmin-Proben ist die Angabe der Probetiefe und das Probedatum auf dem Fragebogen zur Bodenanalyse Pflicht. Bei der Nmin-Untersuchung wird der Nitratstickstoff im beprobten Bodenhorizont in kg N/ha ausgedrückt.

Bei Standarduntersuchung und Nmin auf der gleichen Parzelle müssen 2 getrennte Bodenproben abgegeben werden.

NEU in der Förderprämie 540 ab 20231:

<u>Freilandgemüseflächen</u>: Die Bestimmung der Nitratstickstoff-Rückstände auf 0-25 cm in FREILAND-GEMÜSEFLÄCHEN nach der Nmin-Methode ist im Zeitraum vom 15. Oktober bis zum 15. November auf 0-25 cm vorgeschrieben. Eine Probe pro Schlag muss vom Landwirt abgegeben werden.

Maisanbau: Beim Anbau von Mais ist der Grenzwert von 100 kg N/ha für Nitratstickstoff nach der Nmin-Methode im Oberboden (0-25 cm) nach der Ernte und spätestens bis zum 15. November einzuhalten. Die Probenahme erfolgt jährlich stichprobenartig, dem Zufallsprinzip nach, durch die UNICO im Rahmen der vorgeschriebenen landwirtschaftlichen Kontrollen.

¹ Art. 9. Conditions ayant trait à une fertilisation organique et minérale (Règlement grand-ducal du 21 novembre 2024 instituant des régimes d'aide pour des engagements en matière d'environnement et de climat) [Förderprämie Umwelt 2023-2027])

DO CR	LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG	Auftraggeber:										
Minist de l'Alli Admini de l'agr	Ministère de l'Agriculture, de l'Almentation et de la Viticulture Administration des services techniques de l'agriculture	Adresse:				PLZ / Ort:						
72, Avenue L. \$	72, Avenue L. Salentiny L - 9080 Ettelbruck	Betriebsnummer:	her:		Tel /	Tel / GSM:						
Boîte posta Tel.: 45	Boîte postale 75 L-9001 Ettelbruck Tel.: 45 71 72 - 400 (Rezeption)	Projekt:	☐ Düngeplan-LWK ☐ Düngeplan-CONVIS		☐ Düngeplan-I ☐ Anderes	☐ Düngeplan-Naturpark ÖS ☐ Anderes						
Tel.: 45 71 Fa. agriculture.publ	Tel.: 45 71 72 - 406 (Probenannahme) Fax: 45 71 72 - 193 agriculture,public.lu ; pedologie@asta.etat.lu		Ŗ	ageb	ogen z	zur Boden	analyse	Fragebogen zur Bodenanalyse (für Landwirtschaft und Gartenbau)	ft und Gartenb	au)		
Datum der Probenahme:												
		ANGABE	GABEN ZUR BODENPROBE	ш					GEW	GEWUNSCHTE UNTERSUCHUNG	UNTERS	UCHUNG
Labor-Nr Fortlaufende	nde Flurname Nr	Schlag-Nr (obligatorisch)	FLIK-Nr * (obligatorisch)	Tiefe (fakult.)	Bodenart	Letzte Kultur	Zwischen- frucht	Nächste Kultur	Grund (hand paralyse (pHCaCl ₂ * pa K* Mg*.	Humus ® (C _{co} , N _{ta} , CA)	Nmin* 0	N-NH,⁺/ Smin ®
BEISPIEL 0	An der Uecht	20	189267	0-25cm	(L, M, S, OM)	Winterweizen	Senf	Silomais	×			
1) Zahl der Entnahmestellen	15-25 Einstiche regelmässig verteilt Abdeland. Feldfulter b) Wiesen Mahweiden. Weiden charberen de Weitberge charberen ch Barmschula Freilandromnias Obstradran		0-25 cm 0-15 cm 0-30 cm (und fakultativ 30-60 cm) (getrennte Proben) 0-35 cm	œ 3 0) Kulturart genau a Bei gleichzeitigei Die benötige Boc	angebennd n Nmin- und Grundanalys denmenge beträgt 500-100	z.B. Winterweizen, oder Wiese, Weide, sen sind zwei getrer 00g oder 1/2-1 Liter	 Kulturat genau angeben	cht einfach Grünland Ilag abzugeben!	· C		em Labor vorbehalten
er Probenahme darf kei einem aus mehreren FLIK-N Ankreuzen des Projektes D ordnung der ermitelten Nährst	e) Generation of the control of the	he, Klärschlamm) brei he, Klärschlamm) brei men angegeben werden sender damit einverstand	ffächig erfolgt sein! n. dass eine Kopie der Ergebniss lüngung : https://egriculture.public.li	re an die Ber i/de/veroeffen	atungsorganisa tichungen/pflanz	(I) Gundangye; picitick, Lohma); Pindi Knean Yu, UPA CAL, Ny urchansan Yu, UPA Cad, (I) Amma Congress Ro 1984 Mar meni 80; 1879 (I) Amma Congress Ro 1984 Mar meni 80; 1879 (I) Amma Congress Ro 1884 Mar meni 80; 1879 (I) Amma Mar man Yu, Mar man	N; Pund K nach VDLUFA CAI Vot nach ISO 13878 FA CaCl; Verbandsmerhode A Fundd uengu ng.html, «	.: Mg urd Nansch VOLUFA CeO; 6.14.1; Smh nach VOLUFA 6.3.1 ohne Berücksichtigung der M	iessunsicherheiten.	(1) = 3 € / Pn (2) = 5 € / Prg * Analyse unt	(1) = 3 € / Probe (3) = gratis (2) = 6 / Probe (4) = gratis (2) = 6 € / Probe (4) = gratis * Analyse unter Akkreditierung durch OLAS	3) = gratis 4) = gratis g durch OLAS
PEDO-M-Réception-échantillon-11.pdf	Seite 1 von 2			Zustaı	nd Probe : (Zustand Probe: ORaumtemperatur Ogekühlt Ogefroren) gekühlt 🔘 gefra		Proben gezogen durch :		OLandwirt OBerater OPrivat	OBerater (

Marchese Pick Pic	3	DU GRAND-DUCHÉ	DU GRAND-DUCHÉ DE LUXEMBOURG								
E. Salentinux L. 9000 Ettelbruck costale 75 L. 9000 Ettelbruck costale 75 L. 9000 Ettelbruck costale 75 L. 9000 Ettelbruck Projekt:	S	Ministère de l'A de l'Alimentation Administration de l'agriculture	igniculture, on et de la Viticulture des services techniques	Adresse:		PLZ /	Ort:				
Projekt: Landschaftspflegeprämie - Programm 542 Landschaftspflegeprämie - Programm 542 - ORG 15 712 - 400 (Razegilon) Projekt: Nicht Landschaftspflegeprämie - Programm 542 - ORG 15 712 - 400 (Razegilon) Projekt: Nicht Landschaftspflegeprämie - Programm 542 - ORG Fax 45 71 72 - 405 Projekt: Proj	72, A	wenue L. Salentir	y L - 9080 Ettelbruck	Betriebsnumm	er:	Tel / G	SM:				
Fax 477 77 - 153	ш .	3oîte postale 75 I Tel.: 45 71 72 - 4	L - 9001 Ettelbruck 30 (Rezeption)	Projekt:	Landsch	Jramm 542	☐ Landschaftspflegeprämie - Progra	amm 542 - ORG			
ANGABEN ZUR BODENPROBE auriende Flurname Weinbergs name Bodenart IVV-Weinbergs-Mr (obligatorisch) V- ELIK-Nr* (obligatorisch) Grundanaby 0 An der Uecht (L. M. S. OM) X (L. M. S. OM) X	agrica	Tel.: 45 71 72 40 Fax: 45 7 ulture.public.lu; p	06 (Probenannahme) 1 72 - 193 redologie@asta.etat.lu			Fragebogen zı	ur Bodenanalyse in	n Weinbau			
Fortlatified TutenArr Flurname Weinbergsname Bodenart IVV-Weinbergs-Mr (obligatorisch) V-FLIK-Mr* (obligatorisch) Grundanay . 0 An der Uecht (L. M. S. OM) X				ANGABEN ZUF	BODENPR	OBE		GEWU	NSCHTE UNTERSU	CHUNG	
. 60 An der Uecht (L.M.S.OM)	Labor-Nr	Fortlaufende Tüten-Nr	Flurname Weinbergsı	name	Bodenart	IVV-Weinbergs-Nr (obligatorisch)	V- <u>FLIK</u> -Nr * (obligatorisch)	Grundanalyse (1) (pHCaCl ₂ °, P°, K° Mg°, Na)	Humus (2) (C ₀₉ , N ₀₀ , C _N)	Nmin* (3)	(3)
	BEISPIEL	0	An der Uecht		(L, M, S, OM)			×	×	×	Tiefe 0-25cm

ASTA - Bodenlabor

Administration des services techniques de l'agriculture

Division des laboratoires

Service de pédologie - 72, avenue Salentiny L-9080 Ettelbruck

Postadresse: BP 75 L-9001 Ettelbruck Öffnungszeiten: 8h00-12h00, 13h00-17h00

Name	Funktion	Telefon	E-mail
ASTA – Division des laboratoires	Rezeption	(+352) 45 71 72 – 400	
SERVICE de PEDOLOGIE		Fax: (+352) 45 71 72 - 193	pedologie@asta.etat.lu
Simone MARX	Abteilungsleitung	(+352) 45 71 72 - 451	simone.marx@asta.etat.lu
Lionel LEYDET	Leitung Bodenlabor	(+352) 45 71 72 - 452	lionel.leydet@asta.etat.lu
Catherine DELBROUCK	Leitung Bodenökologie	(+352) 45 71 72 - 342	catherine.delbrouck@asta.etat.lu
Cédric RIES, Joe Mulbach, Michèle MULLER	Bodenlabor	(+352) 45 71 72 - 454	cedric.ries@asta.etat.lu joe.mulbach@asta.etat.lu michele.muller@asta.etat.lu
Sandra BECKIUS-BOUSSON	Sekretariat Bodenlabor	(+352) 45 71 72 - 459	sandra.bousson@asta.etat.lu
Philippe THILL, Anja BRESER	Probenannahme	(+352) 45 71 72 - 406	philippe.thill@asta.etat.lu anja.breser@asta.etat.lu
Frank FLAMMANG, Ben LEINER	Bodenkartierung		frank.flammang@asta.etat.lu ben.leiner@asta.etat.lu
Mathieu STEFFEN	Geoinformatik	(+352) 45 71 72 - 456	mathieu.steffen@asta.etat.lu

Referenzen

- Sachgerechte Düngung für Acker- und Grünland Leitfaden, Ausgabe 2000, Rheinland-Pfalz, Landesamt für Pflanzenbau und Pflanzenschutz, Essenheimer Str. 144, D-55128 Mainz, Juli 2000
- Integrierter Weinbau Rahmenempfehlungen 2008, RheinlandPfalz, DLR-Mosel, Bernkastel-Kues, www.dlr-mosel.rlp.de
- LUFA Augustenberg Gehaltsklassen für Gartenbau
- Règlement grand-ducal du 24 août 2016 instituant une prime à l'entretien du paysage et de l'espace naturel et à l'encouragement d'une agriculture respectueuse de l'environnement [Landschaftspflegeprämie 2016-2022]
- Règlement grand-ducal du 30 mai 2018 modifiant le règlement grand-ducal du 24 août 2016 instituant une prime à l'entretien du paysage et de l'espace naturel et à l'encouragement d'une agriculture respectueuse de l'environnement [Landschaftspflegeprämie 2016-2022]
- Règlement grand-ducal du 21 novembre 2024 instituant des régimes d'aide pour des engagements en matière d'environnement et de climat et d'autres engagements en matière de gestion. [Förderprämie Umwelt 2023-2027]
- VDLUFA- Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten. Die Untersuchung der Böden.
- Düngeverordnung vom 26.5.2017, geändert 2020 (DüV 2020)
- Rapport d'activité 2021, Ministère de l'Agriculture, de la Viticulture et du Développement rural
- Rapport d'activité 2024, Ministère de l'Agriculture, de l'Alimentation et de la Viticulture

Anhang 1Umrechnungsfaktoren für Nährstoffe von der Elementform in die Oxidform und umgekehrt.

Nährstoff	gegeben	gesucht	x Faktor
Chi al abatt	N	NO ₃	4,427
Stickstoff	NO ₃	N	0,226
Phosphor	P ₂ O ₅	Р	0,4364
FIIOSPIIOI	Р	P ₂ O ₅	2,2914
I/alia	K ₂ O	K	0,8302
Kalium	K	K ₂ O	1,205
	MgO	Mg	0,6032
	Mg	MgO	1,658
Magnesium	MgO	MgCO ₃	2,091
	MgCO ₃	MgO	0,478
Natrium	Na ₂ O	Na	0,7419
	Na	Na ₂ O	1,35
	CaO	Ca	0,7147
	Ca	CaO	1,399
Calcium	CaO	CaCO ₃	1,78
	CaCO ₃	CaO	0,5603

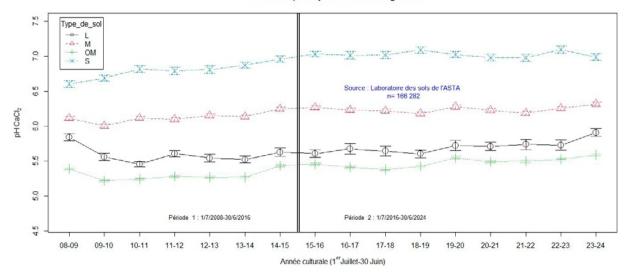
Bodenuntersuchungsergebnisse im ASTA-Bodenlabor werden in Oxidform (P_2O_5 , K_2O) oder Elementform (Mg, Na) angegeben. Düngungsanweisungen sind immer in Oxidform angegeben und entsprechen der Oxidformangabe der Dünger.

Bodenuntersuchungsergebnisse in Belgien und Frankreich sind alle in Elementform angegeben. Beispiel: 12 mg $P_2O_5/100$ g Boden entsprechen einem Gehalt von 5,2 mg P/100g Boden.

Anhang 2

Paramètres sous accréditation OLAS selon ISO 17025

Année	Substrat	Paramètre	Norme	
2017		Prétraitement physique des échantillons de terres pour analyses physico-chimiques	ISO 11464	
2016		Carbone organique, Carbone inorganique	Méthode interne selon ISO 10694	
		pH CaCl ₂	VDLUFA A5.1.1.1	
2017		рН Н ₂ О рН КСІ	ISO 10390	
	Terres	N-NO ₃ (Nmin)	VDLUFA A6.1.4.1	
2018		Terres	P₂O₅ disponible K2O échangeable	VDLUFA A6.2.1.1
2010		Azote total (TN)	Méthode interne selon ISO 13878	
2019		Eléments traces métalliques (ETM) As, Cd, Cr, Cu, Ni, Pb, Zn	Méthode interne selon ISO 11466 et ISO 22036	
2023		Hg	Méthode validée en interne PEDO-PT-Hg	
2024		Mg disponible Teneur en eau, Teneur en matière sèche	Méthode validée en interne PEDO-PT-Mg ISO 11465	


Anhang 3

Langjährige Entwicklung der Phosphorgehalte und dem Säurestatus in landwirtschaftlichen Böden.

Évolution du phosphore disponible [P-CAL] dans les sols agricoles

Évolution du pH moyen dans les sols agricoles

Anhang 4

Mittlere Nährstoffgehalte organischer Dünger (kg/t Frischmasse)

Düngerart	Anzahl Proben	Trocken substanz	Gesamt stickstoff Ntot	Ammonium stickstoff N-NH ₄	Anteil N-NH₄/Ntot	Phosphor P ₂ O ₅	Kalium K ₂ O	Magnesium MgO
	n	% TS	kg/tFr	ischmasse	%	kg	/ t Frischm	nasse
Kompost_Gartenbau	54	59.2	11.3	1.0	9%	5.4	7.1	5.7
Kompost_Grünschnitt	14	56.2	6.8	0.5	8%	3.7	4.6	5.7
Rindermist_kompostiert	11	23.9	5.3	0.5	10%	3.2	5.9	2.3
Rindermist	1027	23.6	5.4	0.9	15%	2.6	8.7	1.8
Milchviehgülle_fest	15	24.7	5.0	1.1	22%	2.7	4.2	3.0
Rindergülle_fest	9	22.7	4.5	1.5	31%	4.4	4.9	4.2
Biogasgülle_fest	137	24.7	6.9	2.6	34%	6.6	6.6	4.1
Rindergülle	377	7.8	3.1	1.4	46%	1.5	4.4	1.1
Milchviehgülle	483	7.5	3.2	1.5	47%	1.4	3.9	1.3
Biogasgülle_Fermenter	14	8.8	4.7	2.5	52%	2.2	5.3	1.5
Rindergülle_flüssig	6	5.5	2.8	1.5	52%	1.3	4.9	1.5
Milchviehgülle_flüssig	14	5.1	2.9	1.5	53%	1.2	3.7	1.2
Biogasgülle_Endlager	287	6.7	3.9	2.3	59%	2.0	4.9	1.2
Biogasgülle_flüssig	78	7.4	5.4	3.4	63%	2.0	6.7	1.3

Daten: ASTA - Service d'analyses d'engrais, d'aliments pour animaux et d'alcools (2019-2025)

Beispiel zur Berechnung der Stickstoff-, Phosphor- und Kalidüngung gemäß den Richtlinien zur Düngung in der Landwirtschaft

Berechnung des mineralischen NPK-Düngebedarfs bei Winterweizen indem die Nährstoffe einer Güllegabe Ende Februar in den Bestand berücksichtigt werden.

Angaben zu Kultur und Boden Bodenart OM – mittlerer Boden (Ösling) Kultur Winterweizen Ertragserwartung 65 dt/ha Kornertrag Güllegabe Ende Februar – 20 t/ha (3,5 kg N/t, 2 kg P,Oe/t, 4 kg K,O/t)

GRUNDDÜNGUNG

Der Bedarf wird anhand von 3 Schritten ermittelt (cf. Kapitel 2. Grunddüngung im ACKERBAU und DAUERGRÜNLAND):

Schritt 1: Ermittlung der Nährstoffgehaltsklasse durch die Bodenuntersuchung.

Ergebnisse der Bodenuntersuchung	P ₂ O ₅ : 25 mg/100 g Boden (Gehaltsklasse D - hoch)
	K ₂ O : 10 mg/100 g (Gehaltsklasse B - niedrig)

Schritt 2: Berechnung des Düngebedarfs für die Kultur und die Ertragserwartung

Die Standarddüngung bezieht sich auf einen Referenzertrag von 50 dt/ha in der C-Klasse. Zuund Abschläge für Abweichungen sind jeweils 12 kg $P_2O_5/10$ dt und 20 kg $K_2O/10$ dt Kornertrag.

W Ida	Referenz Ertrag	P ₂	O ₅	K ₂ O	
Kultur		kg/ha	kg/ 10 dt	kg/ha	kg/10 dt
Winterweizen	50 dt/ha Korn (ink.Stroh)	60	12	100	20

Berechnung des Düngebedarfs bei einer Ertragserwartung von 65 dt/ha:

 P_2O_5 : 60 kg/ha (für 50 dt/ha Korn) + 1,5 * 12 (für 15 dt/ha Korn) = 78 kg P_2O_5 /ha

K₂O: 100 kg/ha (für 50 dt/ha Korn) + 1,5 * 20 (für 15 dt/ha Korn) = 130 kg K₂O/ha

Schritt 3: Zu-/Abschläge für die Anpassung an die Gehaltsklasse des Bodens

 P_2O_5 (Gehaltsklasse D) = $\frac{1}{2}$ * Bedarf = $\frac{1}{2}$ * 78 = 39 kg P_2O_5 /ha

K₂O (Gehaltsklasse B) = Bedarf + 40 = 130 + 40 = 170 kg K₂O /ha

Durch die Güllegabe von 20 t/ha Ende Februar (2 kg/t P205, 4 kg/t K20) wurden bereits folgende Mengen ausgebracht:

 P_2O_5 : 20 t/ha * 2 kg P_2O_5 /t = 40 kg P_2O_5 /ha ; K_2O : 20 t/ha * 4 kg K_2O /t = 80 kg K_2O /ha. Somit ergibt sich für unser Beispiel:

	Düngebedarf	Abgedeckt durch Güllegabe	Maximal zulässige Mineraldüngerergänzung		
P ₂ O ₅	39 kg/ha	40 kg/ha	0		
	Düngebedarf	Abgedeckt durch Güllegabe	Düngungsanweisung Mineraldüngerergänzung		
K ₂ O	170 kg/ha	80 kg/ha	90 kg K ₂ O /ha¹		

Dies würde eine Mineraldüngerergänzung von 2,25 dt/ha Kornkali (40 % K₂O) bedeuten.

1 Bei Kalium handelt es sich lediglich um eine Düngungsanweisung und keine maximal zulässige Obergrenze.

NB. Die P-Düngung darf über den berechneten Bedarf hinausgehen unter der Bedingung, dass sie allein über Organik erfolgt und nicht mit zusätzlicher mineralischer Düngung ergänzt wird. Die mineralische Düngung ist in der E-Klasse ganz verboten. Alle Formen von P-Dünger sind in der Landwirtschaft verboten ab 41 mg $P_2O_E/100g$ Boden.

STICKSTOFFDÜNGUNG

Anrechnung einer Güllegabe von 20 t/ha Ende Februar (3,5 kg N/t) für die mineralische Ergänzungsdüngung zu Winterweizen.

Der Bedarf wird anhand von 3 Schritten ermittelt (cf. Kapitel 5.c).

Schritt 1: Anrechnung des verfügbaren Stickstoffs in Bezug auf den Gesamt-N aus der Gülle abhängig von Kultur und Zeitpunkt.

Lisier bovin, fumier mou, boues d'épuration liquides (% de Ntotal)	Colza/cultures dérobées	Céréales d'hiver	Cultures estivales	Prairies et pâturages	Autres cultures
Été/Automne	35	25	Sans objet	35	35
Printemps	40	30	50	40	40

Durch die Güllegabe von 20 t/ha (3,5 kg/t N) werden 20 t/ha * 3,5 kg/t N = 70 kg Ntotal/ha ausgebracht.

Diese müssen mit 30 % (céréales d'hiver, printemps) d.h. 70 kg N/ha x 30% = 21 kg Norg/ha angerechnet werden.

Schritt 2: Ermittlung der maximalen Stickstoffbedarfs für die Ertragserwartung von 65 dt/ha Korn

Culture	Récolte estimée (dt/ha)	Facteur de correction en fonction du rendement kgN/dt/ha	Fumure azotée organi- que maximale (kg N/ha/an)	Fumure azotée minérale (kg N/ha(an) en cas d'absence de fertilisation organique
Getreide	50 dt/ha	2,5	170	160

Berechnung des Düngebedarfs bei einer Ertragserwartung von 65 dt/ha:

N: 160 kg/ha (für 50 dt/ha Korn) + 2,5 * 15 (für 15 dt/ha Korn) = 197,5 kg N/ha

Schritt 3: Bei einer Kombination von organischen und mineralischen Düngern muss die mineralische Stickstoffdüngung entsprechend der anzurechnenden organischen Düngung reduziert werden.

Somit ergibt sich für unser Beispiel:

	Düngebedarf	Abgedeckt durch Güllegabe	Maximal zulässige Mineraldüngerergänzung
N	197,5 kg/ha	21 kg/ha	176,5

Dies würde eine maximal zulässige Mineraldüngerergänzung von 6,5 dt/ha KAS (Kalkammonsalpeter 27 % N) bedeuten.

Administration des services techniques de l'agriculture